带有轨道角动量(OAM)的涡流梁对于高容量通信和超分辨率成像具有重要意义。但是,芯片上的自由空间涡旋(FVS)和等离子涡旋(PVS)之间存在巨大差距,而主动操纵以及更多的通道中的多路复用已成为紧迫的需求。在这项工作中,我们演示了由螺旋等离子元素层,液晶晶体(LC)层和螺旋介质元素层组成的Terahertz(THZ)级联的MetadeVice。通过旋转轨道角动量耦合和光子状态叠加,PV和FV的平均模式纯度平均产生超过85%。由于螺旋跨面的反转不对称设计引起的,实现了OAM的均衡对称性破裂(拓扑电荷数不再以正面和负为正面发生,但所有这些都是正面的),产生了6个与脱钩的旋转状态和近距离/远距离位置相关的6个独立通道。此外,通过LC集成,可以实现动态模式切换和能量分布,最终获得多达12个模式,调制比率高于70%。这种主动调整和多渠道多路复用元点在PVS和FVS之间建立了桥梁连接,在THZ通信,智能感知和信息处理中显示出有希望的应用。
1。奖励在测试时间扩散模型中的奖励引入了迭代改进,适用于蛋白质和DNA设计Masatoshi uehara,Xingyu SU,Yulai Zhao,Yulai Zhao,Xiner LI,Aviv Regev,Shuiwang Ji,Sergey Ji,Sergey Levine,Sergey Levine,Tommaso Biancalani Arxiv Arxiv Preprint 2。与奖励指导一代的扩散模型中的推理时间对齐:教程和评论Masatoshi uehara,Yulai Zhao,Chenyu Wang,Xiner LI,Aviv Regev,Sergey Legev,Sergey Legev,Tommaso Biancalani Arxiv Arxiv Arxiv Preprint 3。Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding Xiner Li, Yulai Zhao , Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso Biancalani, Shuiwang Ji, Aviv Regev, Sergey Levine, Masatoshi Uehara arXiv preprint 4.理解基于扩散模型的基于增强学习的微调:教程和评论Masatoshi uehara *,Yulai Zhao *,Tommaso Biancalani,Sergey Levine Arxiv Preprint 5。连续时间扩散模型的微调作为熵调查的对照果片uehara *,Yulai Zhao *,Kevin Black,Kevin Black,Ehsan Hajiramezanali,Gabriele Scalia,Nathaniel Lee Diemant,Alex M Tseng,Alex M Tseng,Tommaso Biancalani,Sergey/Sergey Levine在弱凸度假设下优化表现风险Yulai Zhao Neurips 2022关于机器学习优化的研讨会
2023 – Cont。战术网络的分布式机器学习,莱斯大学,PI:圣地亚哥·塞加拉(Santiago Segarra),co-pi:Ashutosh Sabharwal,参考文献:[J1,C1,C3,C4]。研究基础结构无线网络中的分布式多跳计算卸载,以支持陆军通过Edge AI的多域操作。开发图形神经网络,分布式学习和故障安全机制,以增强边缘AI解决方案在自组织自主网络中边缘AI解决方案的上下文意识,适应性,可伸缩性和鲁棒性。2019 – Cont。多域操作的自主网络,莱斯大学,PI:Ashutosh Sabharwal,Edward W. Knightly,Santiago Segarra,参考:[C5,C6,C7,C7,C8,C9,C9,C10,C10,C10,J1,J1,J2,J2,J4,R1]。对图形神经网络和基于图的强化学习进行研究,以解决基础设施无线网络中的资源分配挑战,以支持陆军的多域操作。为链路调度,路由和计算卸载开发高效和分布式启发式方法,从而可以提高网络的效率,性能和边缘智能,同时保持其自我组织功能,可扩展性和鲁棒性。
摘要:细胞隔室中不同生物逻辑过程的时空组织是朝着工程功能性人工细胞迈出的关键步骤。模仿人造细胞内部的受控双向分子通信仍然是一个明显的挑战。在这里,我们在合成微型室中提供了可编程膜的类似细胞器的DNA凝聚力之间可进行照片开关的分子传输。我们使用液滴微流体化学来通过液态液相分离在油中的液滴分离来制造膜的无融合DNA凝聚力,并利用内部DNA作为人工体细胞器,以通过光子调节的无效的生物细胞和生物局部转移生物核酸菌群来模仿细胞内通信。我们的结果突出了一个有前途的新途径,可以通过功能网络组装人造细胞。
摘要最近合成了二维(2D)Mbene板,称为硼片纸(MO 4 B 6 T Z),引起了人们对探索2D过渡金属硼烷的极大兴趣。Boridene具有有序的金属空缺排列,这对于其稳定性至关重要。采用第一原理计算,我们探索了具有不同空位浓度(V M)的硼硼稳定相,电子特性和催化能力。我们的结果表明,V m显着影响硼牛片的凝聚力。声子频谱和摘要分子动力学模拟揭示了无空位的硼苯基MO 6 B 6 T 6(T = O,-OH)的高稳定性,强调了它们的实验实现潜力。用NB,TA或W代替MO原子可以增强硼片的结构稳定性,从而鉴定出四种稳定变体:NB 6 B 6 F 6,TA 6 B 6 F 6 F 6,TA 6 B 6 O 6,W 6 B 6 B 6 B 6 O 6。这些硼片表现出金属行为,五个结构显示出接近零吉布斯的自由能,用于氢原子吸附,表明它们作为氢进化的催化剂
Jul。2024年 - 加利福尼亚大学,圣地亚哥计算机科学与工程系3月。2022- 2023年12月Google访问研究员MSCA(ML,Systems和Cloud AI)Jul。2020 -Jun。2024加州大学圣地亚哥分校计算机科学与工程系副教授,2017年11月 - Jun。 2020年加利福尼亚大学,圣地亚哥分校计算机科学与工程系助理教授,2017年11月至2018年12月,加利福尼亚大学圣克鲁斯分校,计算机工程系访问助理教授,2015年1月 - 2017年11月,加利福尼亚州圣克鲁斯大学,2014年1月1日,加利福尼亚大学,加利福尼亚大学,2014年1月。智能基础设施实验室实验室研究助理2024加州大学圣地亚哥分校计算机科学与工程系副教授,2017年11月 - Jun。2020年加利福尼亚大学,圣地亚哥分校计算机科学与工程系助理教授,2017年11月至2018年12月,加利福尼亚大学圣克鲁斯分校,计算机工程系访问助理教授,2015年1月 - 2017年11月,加利福尼亚州圣克鲁斯大学,2014年1月1日,加利福尼亚大学,加利福尼亚大学,2014年1月。智能基础设施实验室实验室研究助理
功能输入(128,256,3)输入32 rb-kn-1(64,128,8)relu致密32 relu rb-kn-2(32,64,16)relu致密128 relu-kn-3(16,32,32,32,32,32)rela store 2048 Relu Conteate(16,16,32,32,96)relu un ress ress ress ress ress ress res luny luu luue luu distrue 4911152重塑(16,32,96)relu致密2048 Relu rb-kn-3(32,64,32)relu致密128 relu rb-kn-2(64,128,16)relu致密32 relu rb-kn-1(128,256,8)relu concite 32 liar concite 32 liar convite 32 liar convite line line
电池储能系统 (BESS) 在智能电网中起着至关重要的作用,辅助市场提供了高额收益。对于 BESS 所有者来说,决定如何在不同的报价之间取得平衡并与竞争对手竞价,以实现利润最大化非常重要。因此,本文将 BESS 竞价问题表述为马尔可夫决策过程 (MDP),以最大化自动发电控制 (AGC) 市场和能源市场的总利润,同时考虑充电/放电损耗和 BESS 的寿命等因素。在所提出的算法中,引入了函数逼近技术来处理连续的大规模竞价规模并避免维数灾难。作为一种无模型方法,所提出的算法可以从电力市场的随机和动态环境中学习,从而帮助 BESS 所有者有利可图地决定他们的竞价和运营计划。几个案例研究说明了所提算法的有效性和有效性。
注意:请注意,此文档可能不是记录的版本(即已发布的版本)。作者手稿版本(作为同行评审或同行评审后接受的出版物接受的子手稿版本)可以通过出现出版商品牌和/或排便中的出现来确定。如果有任何疑问,请参考已发布的来源。
版权所有©2025 Ping,Zuo,Cai,rong,Yu,Zhang,Wang,Ma,Yang,Li,Li,Wang和Zhao。这是根据Creative Commons归因许可(CC BY)的条款分发的开放访问文章。允许在其他论坛上使用,分发或复制,前提是原始作者和版权所有者被记住,并且根据公认的学术实践,请引用本期刊中的原始出版物。不允许使用,分发或复制,不符合这些条款。
