城市公众的门徒(APA):刘,B. Zhang,F。,... Li,Z。 (2024)。 用于净碳排放和氮和水的氮的共同效果。 食物,5,241-2 在线红色视频。 https://doi.org/10.1038/s4城市公众的门徒(APA):刘,B. Zhang,F。,... Li,Z。(2024)。用于净碳排放和氮和水的氮的共同效果。食物,5,241-2在线红色视频。https://doi.org/10.1038/s4https://doi.org/10.1038/s4
2024- 至今 副教授 / 澳门科技大学,中国澳门 2018-2024 副教授 / 中山大学,中国 2016-2017 访问学者 / 德克萨斯大学达拉斯分校自然科学与数学学院,美国 2015-2018 博士后 / 哈尔滨工业大学机电工程学院,中国 2012-2015:访问学生 / 北京大学空间物理与应用技术研究所,中国 2009-2011:访问学生 / 北京大学空间物理与应用技术研究所,中国
摘要:由于低成本,高能量密度和环境友好的优势,锌离子电池(ZIB)被认为是势存储设备。然而,锌阳极受到不可避免的锌树突,钝化,腐蚀和电池充电和放电期间的进化反应,成为Zibs实际应用的障碍。与金属锌阳极相比,无锌金属阳极提供更高的工作电位,可有效地解决金属锌阳极阳极运行期间锌树突,氢进化和侧反应的问题。电池安全性和周期寿命的改善创造了进一步商业化ZIB的条件。因此,这项工作系统地介绍了“摇椅” Zibs中无锌金属阳极的研究。无锌金属阳极主要分为四类:过渡金属氧化物,过渡金属硫化物,mxene(二维过渡金属碳化物)复合材料和有机化合物,并讨论其性质和锌存储机制。最后,提出了无锌金属阳极发展的前景。本文提出了参考,以进一步促进商业可充电ZIB。
在线工具有意义的活动,并表示希望拥有在线和面对面选项的愿望。一些参与者描述了在限制期间参加各种在线社交团体活动的参与,例如参加“通过Zoom参加Zumba课程”(P6)。随着限制的逐渐缓解,其中一些活动仍在网上继续进行。p14说:“我们曾经每月进行一次讲座,他们再也没有回到面对面。从那以后一直在线。”许多参与者享受这些在线机会提供的便利,尤其是在特殊情况下正如P4所说:“下雨或10度时,我不可能在公园里做瑜伽”。P5说:“这对人有帮助
近几十年来,已经探索了折纸以帮助设计工程结构。这些结构涵盖了多个尺度,已被证明用于航空航天,超材料,生物医学,机器人和建筑应用等各个领域。从传统上讲,折纸或可部署的结构是由手,电动机或气动执行器驱动的,这可能会导致沉重或笨重的结构。另一方面,有效材料对外部刺激的响应重新构成,消除了对外部机械载荷和笨重的致动系统的需求。因此,近年来,与可部署结构合并的活性材料已经显示出对轻重,可编程折纸的远程致动的希望。在这篇评论中,有效材料,例如形状记忆聚合物(SMP)和合金(SMA),水凝胶,液晶弹性体(LCES),磁性软材料(MSMS)以及共价适应网络(CAN)聚合物,它们的驱动机制,以及它们如何用于现有的origanami和这些结构的使用方式,以及它们是可用的结构。此外,突出显示了构建活性折纸的最新制造方法。总结了折纸的现有结构建模策略,用于描述活跃材料的构造模型以及主动折纸研究的最大挑战和未来方向。
摘要人类机器人相互作用(HRI)的领域近年来引起了人们的重大关注,研究人员和从业人员试图了解人类与机器人之间相互作用的心理方面。HRI中关注的一个关键领域是情感识别的心理学,它在塑造人类机器人相互作用的动态方面起着基本作用。本文在人类机器人互动的背景下概述了心理学的背景,强调了了解该领域中人类情绪的重要性。情感识别的概念是人类心理学的关键组成部分,详细探讨了它在人类机器人互动的背景下强调其相关性。情感识别使机器人能够感知和解释人类的情绪,使他们能够做出适当的反应并提高互动质量。从心理角度检查了情感识别在HRI中的作用,从而阐明了其对有效人类机器人界面的设计和开发的影响。此外,本文研究了机器学习技术在人类机器人互动的背景下的应用。机器学习算法已经显示出有望使机器人能够识别和响应人类的情绪,从而有助于更自然和直观的互动。在情感识别中对机器学习的利用反映了HRI领域心理学和技术进步的相交。最后,讨论了与HRI中情绪识别相关的挑战,包括诸如情绪表达,个体差异以及情绪检测的道德含义等问题的问题。应对这些挑战至关重要,这是在人类机器人互动中对情感识别的理解和实施,强调了这一努力的跨学科性质。总而言之,本文强调了情感识别在人类机器人互动心理学中的关键作用,强调了其革命性的潜力,以革新人类和机器人相互互动的方式。通过整合心理学,机器学习和技术的见解,情感识别方面的进步有可能为更多的善解人意和反应迅速的人类机器人相互作用铺平道路,为在这个新兴领域的研究和实际应用提供了新的途径。
超材料,源于希腊语“meta”,意为“超越”,是一种具有独特属性和能力的人造材料。其显著特征在于其结构,由重复的晶胞组成。这些材料的属性主要由晶胞的几何形状而非材料成分决定,在天然材料中并不存在。主动超材料是超材料的一个子类别,其晶胞能够响应外部触发或刺激而改变其几何形状,从而相应地改变其属性。通过操纵这些刺激,主动超材料展现出可调节属性的卓越能力,从而显著增强其功能性和适用性。在众多不同类型的主动超材料中,磁机械超材料通过应用外部磁场(一种快速、可逆且不受束缚的驱动方法)具有独特的形状重构和属性调节优势。图 1(a) 展示了磁机械超材料的一般机制。通常,磁机械超材料的晶胞部分具有专门设计的磁化方向。当受到外部磁场(通常由永磁体或电磁线圈产生)时,磁机械超材料的磁化部分会经历磁扭矩,从而导致形状转变为致动模式。该过程是可逆的,在移除磁场后,或者在某些情况下施加反向磁场后,磁机械超材料会恢复到其初始模式。此外,制造磁机械超材料有两种策略。第一种选择是将磁性粒子嵌入软聚合物材料中,形成磁性软复合材料 [2、3],第二种选择是插入永久刚性磁体
感染(2,3)。HCC的治疗选择包括手术、肝移植、局部区域治疗和分子靶向免疫治疗等(4,5)。目前,肝切除术是HCC的主要治疗选择,但由于诊断晚期、多发性肿瘤、供体来源有限等因素,仅21%的患者有机会接受肝移植(6)。在肿瘤数量有限(即1个直径≤5cm的结节或≤3个直径≤3cm的结节)、肝功能良好[Child-Pugh评分(肝功能指数)≤6](7,8)的患者中,手术切除可实现73.6%的5年生存率。由于肿瘤多、大、血管侵犯、肝外转移、肝功能不全等高危复发因素(9,10),HCC切除后5年内转移复发的概率为60%~70%,因此,对于复发风险高的HCC患者,完善术后辅助治疗势在必行。
这是预发布版本。以下出版物 Wang, J., Guo, X., Du, X., Liang, J., Wu, J., Zhao, G., ... & Zhu, Y. (2022). Revealing the complex lithiation pathways and kinetics of core-shell NiO@ CuO electro- Energy Storage Materials, 51, 11-18 可在 https://doi.org/10.1016/ j.ensm.2022.06.022 上找到。
控制基于 CRISPR 的技术半衰期的分子胶方法 Vedagopuram Sreekanth 1,2,3 , Max Jan 4,5,6 , Kevin T. Zhao 7,8,9 , Donghyun Lim 1,2,3 , Jessie R. Davis 7,8,9 , Marie McConkey 5 , Veronica Kovalcik 5 , Sam Barkal 10,11 , Benjamin K. Law 1,2,3 , James Fife 10,11 , Ruilin Tian 12,13 , Michael E. Vinyard 8,14,15,16 , Basheer Becerra 14,15,16 , Martin Kampmann 12,13 , Richard I. Sherwood 10,11,17 , Luca Pinello 14,15,16 , David R. Liu 7,8,9, Benjamin L. Ebert 4,5,18 和 Amit Choudhary 1,2,3,* 1 麻省理工学院和哈佛大学 Broad 研究所化学生物学和治疗科学项目,美国马萨诸塞州剑桥 02142 2 布莱根妇女医院肾医学和工程部,美国马萨诸塞州波士顿 02115 3 哈佛医学院医学系,美国马萨诸塞州波士顿 02115 4 哈佛大学和麻省理工学院 Broad 研究所,美国马萨诸塞州剑桥 02142 5 丹娜—法伯癌症研究所肿瘤内科系,美国马萨诸塞州波士顿 02215 6 麻省总医院病理学系,美国马萨诸塞州波士顿 02114 7 哈佛大学和麻省理工学院 Broad 研究所 Merkin 医疗变革技术研究所,美国马萨诸塞州剑桥 8 哈佛大学化学与化学生物学系,美国马萨诸塞州剑桥 9 哈佛大学霍华德休斯医学研究所,美国 10 哈佛医学院医学系,美国马萨诸塞州波士顿 02115 11 布莱根妇女医院医学系遗传学分部,美国马萨诸塞州波士顿 02115 12 加利福尼亚大学旧金山分校生物化学和生物物理系神经退行性疾病研究所,美国加利福尼亚州旧金山 94158 13 陈-扎克伯格生物中心,美国加利福尼亚州旧金山 94158 14 麻省总医院分子病理学科,美国马萨诸塞州查尔斯顿 15 哈佛医学院病理学系,美国马萨诸塞州波士顿 16 哈佛大学和麻省理工学院布罗德研究所,美国马萨诸塞州剑桥。 17 荷兰皇家艺术与科学学院 (KNAW) Hubrecht 发育生物学和干细胞研究所,乌得勒支,荷兰 18 霍华德休斯医学研究所,丹娜法伯癌症研究所,美国马萨诸塞州波士顿 02215 *通讯作者:Amit Choudhary 化学生物学和治疗科学计划 麻省理工学院和哈佛大学 Broad 研究所 415 Main Street, Rm 3012 马萨诸塞州剑桥 02142 电话:(617)714-7445 传真:(617)715-8969 电子邮件:achoudhary@bwh.harvard.edu