摘要 随着晶体管越来越小、越来越密集,电子的物理流动可能会因电迁移 (EM) 在互连处形成空隙和裂缝,从而随着时间的推移抑制器件的性能。不符合 EM 规范的电路设计可能会导致灾难性故障和 SI/PI 性能下降。缓解 EM 的一种方法是在铜线层之间使用多个通孔来减少电流拥挤效应。然而,通孔的数量可能会影响关键接头内的电流密度和电流再分布。当前的研究主要集中在基于经验 Black 方程预测 EM 故障时间 (TTF)。然而,这种方法可能无法提供足够的关于空隙形成和裂纹扩展的见解,并反映可能影响 TTF 的电流再分布。在本研究中,我们比较了具有不同结构设计的球栅阵列 (BGA) 测试载体的 EM 寿命,并开发了一种基于多物理场迁移考虑焊点中原子扩散的方法,以研究通孔对电流再分布的影响。此外,还模拟了裂纹扩展以了解失效机制。在 150C 下对无通孔和有 8 个通孔的 BGA 走线施加 5A、7A 和 9A 电流以比较电磁性能。此外,每个测试结构都采用两种不同的表面处理:A 和 B。根据实验结果,执行基于原子通量发散 (AFD) 的有限元分析 (FEA) 模拟以与实验结果进行比较。发现与菊花链走线相比,8 个通孔可以显著降低电流拥挤效应。研究表明,8 个和 4 个通孔的电磁阻力优于无通孔走线,并有助于预测不同结构的电磁寿命,为设计优化提供指导。 关键词 电迁移、可靠性、多物理场、有限元分析、电路优化
江苏科技大学自动化系,镇江 212000 * E-mail: zhipengfei@just.edu.cn 收稿日期: 2022年8月23日 / 接受日期: 2022年9月22日 / 发表日期: 2022年10月10日 本文基于频域分析了光电场输出功率波动特性,并提出了一种基于自适应小波包分频的光电功率分配方法,该方法合理分配了低频、中频和高频能量在不同储能元件之间的分布。结合超级电容器和锂电池的储能特性,设计了一种超级电容器和锂电池的协调控制策略,有效抑制了光伏功率波动对电网的影响。与光伏原有功率相比,本文提出的方法大大降低了光伏功率的波动,从而使最终并网功率区域平滑,从而使电网和储能组件稳定安全发展。最后通过某光电场实测数据的半实物仿真验证了该方法的有效性。关键词:混合储能;协调控制策略;自适应小波包分解1.引言
1. 简介 津巴布韦卫生干预组织 (ZHI) 是一家本地非营利性人类发展组织,注册为私人志愿组织 PVO 编号 17/22,其愿景是让其服务的人群过上健康、幸福和自给自足的生活。ZHI 的使命是与当地社区合作并加强现有机构,开发和提供创新、可持续、高影响力的综合卫生干预措施。ZHI 目前正在实施“重新点燃创新、维持和赋权” (RISE) 计划和“加速和全面艾滋病毒流行病控制护理” (ACCE) 计划,这些计划为期五年(2021 年 10 月 - 2026 年 9 月),由美国国际开发署 (USAID) 资助。要了解有关 ZHI 的更多信息,请访问:www.zhi.org.zw。
1。H. Wright,W。Zhi,M。Johnson-Roberson,T。Hermans。 “通过利用检索增强的先验来重建强大的贝叶斯现场”。 RA-L的评论,2024年。 2。 H. Wright,W。Zhi,M。Johnson-Roberson,T。Hermans。 “ V-Prism:未知桌面场景的概率映射”。 2024年IEEE/RSJ国际智能机器人与系统会议(IROS),2024年。 (8个引用)H. Wright,W。Zhi,M。Johnson-Roberson,T。Hermans。“通过利用检索增强的先验来重建强大的贝叶斯现场”。RA-L的评论,2024年。2。H. Wright,W。Zhi,M。Johnson-Roberson,T。Hermans。 “ V-Prism:未知桌面场景的概率映射”。 2024年IEEE/RSJ国际智能机器人与系统会议(IROS),2024年。 (8个引用)H. Wright,W。Zhi,M。Johnson-Roberson,T。Hermans。“ V-Prism:未知桌面场景的概率映射”。2024年IEEE/RSJ国际智能机器人与系统会议(IROS),2024年。(8个引用)
和Y染色体微缺失(YCMS)约有15%至30%的男性不育病例(Hess and Renato de Franca,2008; Leaver,2016),Y染色体微缺失,尤其是遗传学学尤其是遗传学学的15%的严重的寡素蛋白酶和azoospermia and azoospermia(Arumugia)(Arumumia and Arumumia and and and and)。Vogt等。(1996)在1996年,根据它们在Azoospermic雄性中的不同阶段中的角色,在YQ11的三个子区域内划定了76个离散的“微骨骼”位点,将它们在功能上归类为AZFA,AZFB和AZFC区域,并将其分类为AZFC区域,并将其与AZFC区域(每种与男性的雌性精神病相关)。此外,Kent-First等。(1999)后来发现AZFD是位于AZFB和AZFC之间的独特基因结构。不育男性中YCM的检测率表现出显着的地理和种族差异,伊朗的AZF缺失率为24%,在美国为12%,在德国和奥地利为少于2%(Cioppi等人,2021年)。Haiyang Yu等人的研究。 (2023)在1,338名被诊断为Azoospermia或严重的寡素化质体的中国男性中,有9%的AZF缺失,占AZFC缺失为6%,而AZFA缺失约为0.8%。 Y染色体上的AZF区域包含多个关键基因以进行精子发生,而不同区域的微缺失可能会通过影响基因表达和功能而导致低氮杂的植物或Azoospermia。 AZFA区域中的微缺失导致仅Sertoli细胞综合征(SCO),其临床特征是睾丸萎缩和Azoospermia(Liu等,2017)。Haiyang Yu等人的研究。(2023)在1,338名被诊断为Azoospermia或严重的寡素化质体的中国男性中,有9%的AZF缺失,占AZFC缺失为6%,而AZFA缺失约为0.8%。Y染色体上的AZF区域包含多个关键基因以进行精子发生,而不同区域的微缺失可能会通过影响基因表达和功能而导致低氮杂的植物或Azoospermia。AZFA区域中的微缺失导致仅Sertoli细胞综合征(SCO),其临床特征是睾丸萎缩和Azoospermia(Liu等,2017)。作为AZFA区域具有对精子发生必不可少的基因,其缺失意味着即使使用诸如显微解剖睾丸精子提取的过程,也无法获得精子。缺失包含AZFB和AZFC导致Sertoli细胞综合征或精子毒性停滞,而受影响的个体通常会出现Azoospermia(Mahadevaiah等,1998; Yan等,2017)。AZFC缺失构成了最常见的AZF微骨骼类型,约占Y染色体微缺失的60%。近年来,由于其高表型异质性,研究人员专注于AZFC区域内的“部分缺失”,表现为多种程度的精子生成功能障碍:Oligozoospermia和Azooospermia和Azooospermia(Kühnert等人(Kühnert等人,2004年,2004年);然而,由于可能产生正常精子,具有AZFC缺失的个体可能代表了能够使生物后代的YCMS患者的唯一子集。欧洲雄科学院(EAA)和欧洲分子遗传学质量网络(EMQN)推荐SY84和SY86作为首选序列标记的位点(STS),用于评估AZFA缺失,因为它们的缺失高度表明完全表明完整的AZFA缺失(Krausz等,2014)。sts是指具有精确基因组位置的短而单拷贝的DNA序列,可以通过聚合酶链反应(PCR)检测到(Olson等,1989),作为人类基因组中的地标,以确定DNA的取向和指定序列的相对位置。在对AZF区域的研究中,STS被用作检测微缺失的基因座。通过通过PCR检查这些基因座,我们可以确定Y染色体AZF区域中微缺失的状态,这对于诊断男性不孕症非常重要。然而,最近的研究表明,在AZFA地区具有部分缺失的少数男性,包括涉及SY84或SY86的男性,表现出正常的精子发生和生育能力
doi:https://dx.doi.org/10.30919/es1060锂离子电池的基于硅的阳极开发及其在固态电解器Yifei Zhou,1 Wenfan Feng,1 Wenfan Feng,1 Yanbin Xu Xu 1,* Yanbin Xu Xu Xu 1,* Xingang Liu,* Xingang Liu,1 Zhiai Weqiia,1 Zhiai wangang,1 Zhi wangang,1 Zhi wang, Burcar,2 Zhe Wang 2,*和Zhenglong Yang 1,*抽象的锂离子电池(LIBS)由于其高能密度,较大的工作温度范围,高工作电压以及良好的安全性和循环稳定而广泛用于日常生活的各个方面。阳极是锂离子电池的重要组成部分,可以存储和释放锂离子。因此,选择阳极对改善电池性能的关键影响。基于硅的阳极预计将是下一代高性能锂离子电池的阳极材料,这是由于其高理论特异性能力和其他优势。然而,锂过程中硅的体积变化和诱导的SEI的不稳定性对硅阳极的发展构成了巨大的挑战。本文回顾了锂离子电池中硅阳极的开发,系统地介绍了基于硅的材料作为阳极所带来的挑战和改进方法,并研究了硅阳极在固态电解质中的应用。最后,关于锂电池的硅阴极的未来开发的一些看法。
推荐引用推荐引用hao,天希; Yin,Zhi;陈的陈;拉尔,安苏; Llamas,Jesse;迈克尔(Michael,2024年)“视频游戏是一种促进领导技能和能力发展的方式”,《无国界奖学金》:第1卷。2:ISS。 1,第5条。 doi:https://doi.org/10.57229/2834-2267.1038可在以下网址提供:https://digitalcommons.pepperdine.edu/swbj/swbj/vol2/iss1/iss1/5 52:ISS。1,第5条。doi:https://doi.org/10.57229/2834-2267.1038可在以下网址提供:https://digitalcommons.pepperdine.edu/swbj/swbj/vol2/iss1/iss1/5
Thierry Roisnel, Yoshihiro Tsujimoto, Masaki Morita, Yasuto Noda, Yuuki Mogami, Atsushi Kitada, Masatoshi Ohkura, Saburo Hosokawa, Zhaofei Li, Katsuro Hayashi, Yoshihiro Kusano, Jung eun Kim, Naruki Tsuji, Akihiko Fujiwara,Yoshitaka Matsushita,Kazuyoshi Yoshimura,Kiyonori Takegoshi,Masashi Inoue,Mikio takano和Hiroshi Kageyama*,“ Batio3的氧气含量Huo,Xianyu Xu,Zhi LV,Jiaqing Song*,Mingyuan He,Zhaofei li,
Qi Huang 1 Yangrui Chen 1 Zhi Zhang 1 Yanghua Peng 1 Xiang Li 1 Cong Xie 1 Shibiao Nong 1 Yulu Jia 1 Sun He 1 Hongmin Chen 1 Zhihao Bai 1 Qi Hou 1 Shipeng Yan 1 Ding Zhou 1 Yiyao Sheng 1 Zhuo Jiang 1 Haohan Xu 1 Haoran Wei 1 Zhang Zhang 1 Pengfei Nie 1 Leqi Zou 1 Sida Zhao 1 Liang Xiang 1 Zherui Liu 1 Zhe Li 1 Xiaoying Jia 1 Jianxi Ye 1 Xin Jin 2 , Xin Liu 1
1. Jiang F、Jiang Y、Zhi H、Dong Y、Li H、Ma S 等。人工智能在医疗保健中的应用:过去、现在和未来。中风和血管神经病学。2017;2(4):230。 2. Corbyn Z。老年护理的未来已来——人工智能。澳大利亚卫报 [互联网]。2021 年 [引用于 2023 年 2 月 21 日]。可从以下网址获取:https://www.theguardian.com/us-news/2021/jun/03/elder-care-artificial-intelligence-software 3. Williams M。人工智能可以为老年护理提供更多选择和控制。澳大利亚老龄化议程 [互联网]。2021 年 [引用于 2023 年 2 月 21 日]。可从以下网址获取:https://www.australianageingagenda.com.au/contributors/ai-can-provide-aged-care-greater-choice-and-control/