1。引言在太阳能和地球的磁层等离子体中观察到的充电颗粒(Lin&Forbes 2000; Bhattacharjee 2004; Birn等2012; Fu等。2013; Chen等。2020)和实验室等离子体(Yamada等人1994; Hsu等。 2001; Fiksel等。 2009; Fox等。 2010; Yamasaki等。 2015; Tanabe等。 2017)经常与磁重新连接有关(Parker 1963; Priest&Forbes 2000),这是改变磁场拓扑的过程,从而允许爆炸的储存磁能。 高能密度激光生产的等离子体中的磁重新连接已得到广泛研究(Nilson等人。 2006,2008; Li等。 2007; Dong等。 2012; Fiksel等。 2014; Rosenberg等。 2015 a,b; Fox等。 2020)和等离子体加热以及超热能电子的存在已被记录(Zhong等人。 2010,2016)。 尽管已经检测到高能电子,但其加速度的机制仍然很少了解。 此外,替代的贡献1994; Hsu等。2001; Fiksel等。 2009; Fox等。 2010; Yamasaki等。 2015; Tanabe等。 2017)经常与磁重新连接有关(Parker 1963; Priest&Forbes 2000),这是改变磁场拓扑的过程,从而允许爆炸的储存磁能。 高能密度激光生产的等离子体中的磁重新连接已得到广泛研究(Nilson等人。 2006,2008; Li等。 2007; Dong等。 2012; Fiksel等。 2014; Rosenberg等。 2015 a,b; Fox等。 2020)和等离子体加热以及超热能电子的存在已被记录(Zhong等人。 2010,2016)。 尽管已经检测到高能电子,但其加速度的机制仍然很少了解。 此外,替代的贡献2001; Fiksel等。2009; Fox等。2010; Yamasaki等。2015; Tanabe等。2017)经常与磁重新连接有关(Parker 1963; Priest&Forbes 2000),这是改变磁场拓扑的过程,从而允许爆炸的储存磁能。高能密度激光生产的等离子体中的磁重新连接已得到广泛研究(Nilson等人。2006,2008; Li等。 2007; Dong等。 2012; Fiksel等。 2014; Rosenberg等。 2015 a,b; Fox等。 2020)和等离子体加热以及超热能电子的存在已被记录(Zhong等人。 2010,2016)。 尽管已经检测到高能电子,但其加速度的机制仍然很少了解。 此外,替代的贡献2006,2008; Li等。2007; Dong等。 2012; Fiksel等。 2014; Rosenberg等。 2015 a,b; Fox等。 2020)和等离子体加热以及超热能电子的存在已被记录(Zhong等人。 2010,2016)。 尽管已经检测到高能电子,但其加速度的机制仍然很少了解。 此外,替代的贡献2007; Dong等。2012; Fiksel等。2014; Rosenberg等。2015 a,b; Fox等。2020)和等离子体加热以及超热能电子的存在已被记录(Zhong等人。2010,2016)。尽管已经检测到高能电子,但其加速度的机制仍然很少了解。此外,替代的贡献
(1)源自:Fuller,Aidan&Fan,Zhong&Day,Charles。(2020)。数字双胞胎:启用技术,挑战和开放研究,doi 10.1109/access.2020.2998358,IEEE访问,摘自plm.automation.siemens.com(2)Diann Daniel在https://wwwwwwwwwwwwwwwww.techtarget.com/search.com/searcherp/drive-dive-comeearcherp/drive-drignition/drignition/Drive)
Denise Jamal,利益相关方和社区参与总监 Barbara Ellard,资源和系统充足性总监 Marko Cirovic,资源开发和采购高级经理 Dave Barreca,资源收购、资源开发和采购主管 Denise Zhong,资源收购、资源开发和采购主管
•信息和随机选择的成本。SIMS(2003,2010); Caplin和Dean(2013,2015); Caplin,Dean和Leahy(2021);牙本质(2020); Denti,Marinacci和Rustichini(2020); Pomatto,Strack和Tamuz(2019); H·耶伯特和伍德福德(2020a,2020b);布洛德尔和郑(2021)。SIMS(2003,2010); Caplin和Dean(2013,2015); Caplin,Dean和Leahy(2021);牙本质(2020); Denti,Marinacci和Rustichini(2020); Pomatto,Strack和Tamuz(2019); H·耶伯特和伍德福德(2020a,2020b);布洛德尔和郑(2021)。
Positioning Mapping of Colored Masks in Japan: Correlation Analysis of Hue, Saturation, Brightness, and Impression of Masks [S3] Topics: Innovative Design for Cultural Sustainability Host: Prof. Po Hsien Lin 林伯賢教授 , National Taiwan University of Arts Location: Zhong Shang Building 7203 Date: Thursday, November 21st, 2024
努力的关键部分是由Jiawei Zhong博士领导的。学生和Karolinska Institutet博士后研究员Danae Zareifi。他们确保可以通过标准化术语比较来自不同来源的数据。鉴于几乎没有蛋白质组学数据,它们还生成了新的蛋白质分析数据集,从而提高了门户网站验证基因活性发现的能力。
dyfyniad o'r fersiwn a gyhoeddwyd / for发布版本(APA):Hong,Y.,Y.,Zhong,Z。,&Shore,K。A. < / div>(2024)。延迟反馈半导体激光器中的时间延迟签名抑制,作为复杂生理网络中反馈控制的范式。网络生理学的边界,第3条,第1330375条。https://doi.org/10.3389/fnetp.2023.1330375
Shaochen Zhong, Duy Le, Zirui Liu, Zhimeng Jiang, Andrew Ye, Jiamu Zhang, Jiayi Yuan, Kaixiong Zhou, Kaixiong Zhou, Zhaozhuo Xu, Jing Ma, Shuai Xu, Vipin Chaudhary and Xia Hu, “GNNs Also Deserve Editing, and They Need It More Than Once”, Forty-first International Conference on Machine Learning (ICML), Vienna, Austria, July 21, 2024
Zhong Irene Wang, MD Research Director and Associate Professor of Neurology, Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA Epilepsia related interests: Structural and functional neuroimaging, MRI post- processing, machine/deep learning, ultra-high-field MRI, quantitative MRI, epilepsy surgery, noninvasive diagnostic methods, malformation皮质发育,磁源成像,多模式整合。
Jiang J, Stührwohldt N, Liu T, Huang Q, Li L, Zhang L, Gu H, Fan L, Zhong S, Schaller A 等 (2022) 卵细胞分泌的天冬氨酸蛋白酶 ECS1/2 促进配子附着,使卵细胞优先于中心细胞受精。J Integr Plant Biol. doi: 10.1111/jipb.13371 Google Scholar:仅限作者 仅限标题 作者和标题