新一代测序 (NGS) 的进步使得人们能够生成人类遗传变异的深度目录,并发现了大量与疾病相关的变异。大多数 NGS 应用都集中在单核苷酸多态性 (SNP) 或短插入和缺失 (indel) 上。串联重复是遗传变异的另一个丰富来源,由于难以获得准确的基因型,因此在很大程度上被忽视了。在这里,我们主要关注重复单元长度为 1-6 bp 的短串联重复 (STR)。总的来说,STR 占人类基因组的约 3%,超过整个蛋白质编码外显子组 [1]。STR 在基因调控区富集 ([2],[3]),重复拷贝数的变化可以通过多种机制影响基因调控,包括修改转录因子结合位点、改变 DNA 甲基化模式 [4] 或其他方式。 STR 中重复单元数量的大幅增加与数十种疾病 [5] 有关,例如亨廷顿氏病 [6] 和脆性 X 综合征 [7],而较温和的逐步变化与包括血液和脂质生物标志物在内的复杂性状有关 ([8], [9])。STR 还被用作癌症研究中诊断的遗传标记,并在多种癌症中发挥作用,包括结直肠癌 [10] 和乳腺癌 [11]。
简介胆管癌 (CC),也称为胆管癌,是一种罕见但极具侵袭性的恶性肿瘤,起源于胆管上皮。发达国家的 CC 发病率似乎在增加 [1]。唯一有可能治愈患者的方法是手术干预;然而,在诊断时,大多数患者已经不适合手术。胆管癌姑息治疗的标准一线化疗是吉西他滨联合顺铂 [2]。二线治疗选择有限,通常采用 FOLFOX 方案,与单纯对症治疗相比,该方案仅略微改善预后。在胆管癌患者中,基因组分析已发现几种潜在的致癌变异,包括编码成纤维细胞生长因子受体 (FGFR) 基因的变异。
摘要:在Unani文献中提到了用于管理类似糖尿病状况的多草药unai unani公式,Qurs-e-Ziabetus(QZ)。这项研究旨在评估QZ的抗糖尿病活性,QZ的抗糖尿病活性在Sprague Dawley大鼠的烟酰胺 - 链霉素诱导的糖尿病中提到。开发了QZ和HPTLC纤维固定文件的初步植物化学筛选。在正常的Eugglymemic SD大鼠中进行口服葡萄糖耐受性测试(OGTT)。此外,在烟酰胺 - 链蛋白酶诱导的糖尿病大鼠中测试了抗血糖势。提供了28天的QZ(250、500和1000 mg/kg)和Glibenclamide(10 mg/kg)的处理。28天后,所有大鼠都禁食过夜,并收集了血液样本并进行生化估计和血液学参数。收集胰腺,肝脏和肾脏,并进行组织病理学分析。在QZ中检测到各种植物成分。在OGTT中,QZ治疗并没有显着降低受葡萄糖(2 gm/kg)挑战的大鼠的血糖水平。与糖尿病对照相比,QZ在烟酰胺链接受蛋白诱导的糖尿病模型中,QZ表现出显着依赖剂量依赖性的空腹血糖降低效果。QZ和Glibenclamide治疗不会影响烟酰胺 - 链接受蛋白诱导的糖尿病大鼠的体重或生化和血液学参数。观察到胰腺,肝脏和肾脏的组织学分析,与正常对照相比,糖尿病组的一些变化。同时,QZ治疗显示链蛋白酶病毒和进一步的糖尿病疾病诱导的组织病理学变化得到了改善。研究数据表明,在烟酰胺 - 链蛋白酶诱导的糖尿病大鼠中,QZ在给药中的抗血糖潜力28天。
摘要 摘要 人类肢体或器官的丧失仍然是一个挑战,尤其是在人们不断依赖触摸屏和任务的世界中。因此,患者几乎无法承受和应对因这种丧失而遇到的越来越多的限制。现代手段和技术,如先进的人工部件,减少了对残疾或失去肢体或器官的患者的限制。例如,手部假肢为改善人体肢体的功能能力提供了强有力的工具,从而提高了使用者的生活质量。然而,使用假肢的患者仍然遇到许多问题,例如,遭受完整的肢体和背部疼痛、假肢系统成本高以及与假肢性能相关的困难、控制不佳和更新困难。基于上述问题,目标是设计一种由重量轻的重型塑料制成的 3D 仿生手臂。目的是使用伺服电机代替步进电机,以减少延迟和减轻重量。目的还在于设计一个基于人工智能 (AI) 的仿生手臂程序,该程序可以进行修改以用于未来的目的,例如添加新手势和优化系统控制。新设计包括 3D 打印手臂、控制设计、测试电机和 EMG 传感器、选择具有成本效益的部件、模拟和最终确定真实原型。结合直接执行运动机制和仿生假肢的全尺寸模型,该开发旨在用于上肢的医疗康复。实验结果包括开发一个真正的基于 AI 的系统来定制使用神经网络控制的手势。结果还包括保持 EMG 传感器的准确和干净的读数。此外,新的仿生假肢手臂确保性能不会延迟,模仿手的正常功能。结果还表明,我们的设计在成本效益方面超越了现有的设计,前提是在其他几个规格上它是可比的。设计灵活且基于人工智能控制。作为未来的展望,可以在新的基于人工智能的设计中测试更多的算法,并测试更多的手势。
人工智能 (AI) 已成为项目管理中的一股强大力量,它改变了传统做法并扩展了人类的能力。本研究探讨了 (AI) 人工智能在项目管理中发挥的各种作用,并评估了其对项目成功率的影响。通过对写作和实际数据研究的广泛调查,本研究发现,人工智能在项目管理中的应用已导致项目成功率显著提高。总体而言,人工智能实施已使不同行业的项目成功率显著提高约 20%。通过自动化单调的任务、优化资产配置和优化动态周期,人工智能已显示出简化项目工作流程和降低风险的能力。然而,除了其有希望的优势之外,人工智能实施也带来了一些挑战,例如数据安全问题、道德问题和劳动力再培训要求。这概括了在项目管理中采用人工智能技术以实现更高效率、充分性和增长的基本意义。展望未来,预计需要进一步研究以调查新兴模式并解决在控制人工智能以实现项目成功方面日益严峻的挑战。
SunZia 输电系统是一条长约 552 英里的双极高压直流 (HVDC) 输电线路,位于新墨西哥州和亚利桑那州,输电容量为 3,021 MW(“SunZia 输电系统”)。SunZia 输电系统将把西南部的发电资源与加利福尼亚州和亚利桑那州的市场和客户连接起来。SunZia Transmission 于 2023 年开始建设,预计将于 2026 年上半年开始商业运营。SunZia Transmission 是 Pattern Energy Group LP(“Pattern Energy”)的间接全资子公司。对于位于新墨西哥州的 SunZia 输电系统的资产,SunZia Transmission 和新墨西哥州可再生能源输电管理局 (RETA) 1 已达成租赁协议,RETA 拥有新墨西哥州内的实物资产,但 SunZia Transmission 仍负责 SunZia 输电系统的开发、建设、融资和运营,并拥有 SunZia 输电系统创造的经济利益和输电容量 2。
•采用标准章程草案用于部署通信基础架构。•支持希望采用章程的市政当局(标准化所有电信设备的过程和程序)。•开发一个框架 /白皮书,以加速采用替代部署方法以降低部署成本。由于上述原因,这对于更广泛的采用和包容性至关重要。•建立并扩大了围绕设备和基础架构的访问的对话。没有这种访问连接,就无法利用有影响力和有意义的。在这一领域进行缩放至关重要。•利用现有资产(移动 /固定线运算符),SA Connect Initiative等。•投资 - 创新且可行的商业结构,以适应连接部署。
未经 SunZia 书面授权,不得复制或全部或部分使用这些演示材料用于任何其他目的,也不得将其提供给任何人。尽管我们认为此处包含的信息准确可靠,但通过提供此演示,SunZia 不对此类信息的准确性或完整性做出任何明示或暗示的陈述或保证。通过接受此演示,接收者同意 SunZia 对本演示或发送给接收者的任何其他书面或口头通信中包含的任何陈述(明示或暗示)或任何遗漏不承担任何责任。在任何情况下,提供此演示均不得暗示 SunZia 或其任何项目参与者的事务在此日期之后没有发生变化。本演示中可能总结了各种协议的某些条款,但不应假定这些总结是完整的。这些总结完全符合原始文件文本的规定。
- Atomai软件库的创建者和首席开发人员,用于显微镜数据的深度/机器学习分析(https://github.com/pycroscopy/atomai)。- GPIM软件包的创建者和首席开发人员,用于应用高斯流程和贝叶斯优化在成像和光谱数据集中(https://github.com/ziatdinovmax/gpim)。- 图像和光谱分析中的变异自动编码器应用的Pyraved软件包的创建者和首席开发人员(https://github.com/ziatdinovmax/pyravy)。- 对Pycroscopy生态系统(https://github.com/pycrsoscopy)中各种包装的积极贡献,包括用于存储和可视化高维成像和光谱数据的软件包。荣誉和奖项: