hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
墨尔本(澳大利亚)和印第安纳波利斯,位于(美国) - 2025年2月26日。 Telix Pharmaceuticals Limited(ASX:TLX,NASDAQ:TLX,TLX,TELIX,公司)今天宣布,美国(美国)食品和药物管理局(FDA)已接受了其生物学许可申请(BLA)的突破性肾脏肾脏癌症宠物1 Imaging Agent tlx250-CDX(Zirca-Zircaix®-Zirca-Zirm®-89-89-89-89-89-89-89 ZIMB)优先审查并提供了2025年8月27日的PDUFA 3日期,为2025年的美国商业发布铺平了道路。 如果经批准,TLX250-CDX将成为最准确和非侵入性诊断和表征清晰细胞肾细胞癌(CCRCC)的商业成像剂,这是肾癌的最常见和最具侵略性的亚型之一。 它通过特异性结合与碳酸酐酶IX(CAIX)(一种经过验证的靶蛋白)在95%的CCRCC细胞中表达,从而产生具有高肿瘤与背景比的图像,并且读取器内和读取物一致性高。 BLA基于Telix成功的全球3阶段3锆石4研究,该研究表明CCRCC的灵敏度为86%,特异性为87%和93%的阳性预测值(PPV),包括在很小的,难以检测的病变中5。 这项研究的结果于2024年9月在柳叶刀肿瘤学上发表,由布莱恩·舒赫(Brian Shuch)教授(加利福尼亚大学,洛杉矶大学,加州大学洛杉矶分校)和同事6进行了同行评审的手稿。 该论文概述了对一种新的非侵入性技术的至关重要的需求,该技术可以准确地检测和区分患者的CCRCC与其他肾脏肿块,并得出结论,TLX250-CDX满足了这一需求,并且“有可能改变实践。”墨尔本(澳大利亚)和印第安纳波利斯,位于(美国) - 2025年2月26日。Telix Pharmaceuticals Limited(ASX:TLX,NASDAQ:TLX,TLX,TELIX,公司)今天宣布,美国(美国)食品和药物管理局(FDA)已接受了其生物学许可申请(BLA)的突破性肾脏肾脏癌症宠物1 Imaging Agent tlx250-CDX(Zirca-Zircaix®-Zirca-Zirm®-89-89-89-89-89-89-89 ZIMB)优先审查并提供了2025年8月27日的PDUFA 3日期,为2025年的美国商业发布铺平了道路。如果经批准,TLX250-CDX将成为最准确和非侵入性诊断和表征清晰细胞肾细胞癌(CCRCC)的商业成像剂,这是肾癌的最常见和最具侵略性的亚型之一。它通过特异性结合与碳酸酐酶IX(CAIX)(一种经过验证的靶蛋白)在95%的CCRCC细胞中表达,从而产生具有高肿瘤与背景比的图像,并且读取器内和读取物一致性高。BLA基于Telix成功的全球3阶段3锆石4研究,该研究表明CCRCC的灵敏度为86%,特异性为87%和93%的阳性预测值(PPV),包括在很小的,难以检测的病变中5。这项研究的结果于2024年9月在柳叶刀肿瘤学上发表,由布莱恩·舒赫(Brian Shuch)教授(加利福尼亚大学,洛杉矶大学,加州大学洛杉矶分校)和同事6进行了同行评审的手稿。该论文概述了对一种新的非侵入性技术的至关重要的需求,该技术可以准确地检测和区分患者的CCRCC与其他肾脏肿块,并得出结论,TLX250-CDX满足了这一需求,并且“有可能改变实践。”Precision Medicine首席执行官凯文·理查森(Kevin Richardson)说:“我们很高兴FDA接受了这一BLA,因为它使我们更近一步将我们的突破性产品带给患者。我们的目标是彻底改变肾癌的管理,就像PSMA-PET/CT 7扫描改变了前列腺癌的管理一样。通过为肾脏肿块提供更明确的临床诊断,我们认为氧化锆2将帮助医生做出更及时,自信的患者管理决策,并更快地使患者清楚地了解其疾病和治疗方案。在Telix成功的泌尿外科系列中进一步建设,我们准备在2025年将这种强大的Precision Medicine产品推向市场。”关于TLX250-CDX
摘要:氧化锆(ZRO 2)是一种良好且有前途的材料,由于其出色的化学和物理特性。在用于腐蚀保护层,磨损和氧化的涂料中,在光学应用(镜像,滤波器)中用于装饰组件,用于反伪造的解决方案和医疗应用。ZRO 2可以使用不同的沉积方法(例如物理蒸气沉积(PVD)或化学蒸气沉积(CVD))作为薄膜获得。这些技术是掌握的,但由于固有特性(高熔点,机械和耐化学性),它们不允许对这些涂层进行微纳米结构。本文描述的一种替代方法是Sol-Gel方法,该方法允许使用光学或纳米图形印刷术的无物理或化学蚀刻过程的ZRO 2层进行直接微纳米结构。在本文中,作者提出了一种完整且合适的ZRO 2 SOL-GEL方法,允许通过光学或纳米IMPRINT光刻来实现复杂的微纳米结构,以实现不同性质和形状的基材(尤其是非平面和箔材料的底物)。通过掩盖,胶体光刻和玻璃和塑料底物以及平面和弯曲的底物,通过掩盖,胶体光刻和纳米图光刻来呈现ZRO 2 Sol-Gel的合成以及微纳米结构过程。
共享护理协议钠锆环硅酸盐 (Lokelma®) 用于治疗成人持续性高钾血症 本共享护理协议 (SCP) 详细说明了对使用钠锆环硅酸盐 (Lokelma®) 治疗持续性高钾血症的成人患者的护理共享。应结合最新的产品特性摘要 (SmPC) 阅读,网址为 http://www.medicines.org.uk/emc/ 如 NHS England 指南 2018 (07573)“初级和二级/三级护理之间的处方责任”中所述:当专科医生认为患者的病情稳定或可预测时,他们可能会寻求相关全科医生(和患者)的同意来共享他们的护理。本文件提供有关专科医生和相关全科医生之间共同承诺的药物治疗的信息。欢迎全科医生参与。如果全科医生没有信心承担这些角色,那么他们没有义务这样做。在这种情况下,专科医生将对患者所诊断出的病症承担全部临床责任。开药的医生对药物及其使用后果负有临床责任。注意:如果全科医生决定不参与对某位患者的共享护理,他们必须在收到共享护理请求后 2 周内以书面形式通知相关专科医生。简介锆钠环硅酸盐 (Lokelma®) 是一种不被吸收的阳离子交换化合物,可在胃肠道中充当选择性钾结合剂。锆钠环硅酸盐适用于治疗成人患者的高钾血症。如果患者符合所设定的标准,NICE TA599 建议将其作为危及生命的高钾血症和 3b 至 5 期慢性肾病或心力衰竭持续性高钾血症的紧急治疗选择。紧急治疗应在急性医院环境中进行,这不在本共享护理协议的范围内。由专科医生开具的用于治疗持续性高钾血症的锆环硅酸钠可根据 NICE 建议在共享护理安排下继续使用。本文件适用于 18 岁及以上的成年人。MHRA/CHMP 建议:无 如需更多信息,请点击以下链接或访问:• 英国国家处方集 • NICE TA599 用于治疗高钾血症的锆环硅酸钠 • 产品特性总结 – Lokelma®
ZrO 2 和 HfO 2 NC 均用作光学活性镧系元素离子(例如铕)的主体。1,14-18 氟化物(例如 NaYF 4 和 NaGdF 4 )是另一类广泛用作镧系元素主体的纳米晶体,用于上转换和下转换。19-23 在氟化物体系中,合成工艺已经很成熟,可以在纳米晶体内精确定位掺杂剂,并在掺杂核上生长未掺杂的壳。后者产生核/壳结构,这在半导体纳米晶体(量子点)领域是首创的,用于防止激发电子和空穴与表面陷阱相互作用。24、25 同样,壳层保护镧系元素免受表面效应的影响,从而提高上转换和下转换过程的量子效率。 26 此外,在镧系元素掺杂的氟化物的情况下,多层结构可提供受控的能量级联。27 更高的量子效率加上较长的寿命使其可用于时间门控荧光成像等。15、28 由于生产具有复杂(例如核/壳)结构的胶体稳定氧化物纳米晶体的合成挑战,氧化物主体的使用范围较窄。29 但是,氧化物主体的化学性质更稳定,而氟化物可溶解在高度稀释的水介质中。30
摘要:需要临床需要开发快速的过程支架来修复骨缺损。当前的研究介绍了利用基于熔点的3D打印的骨组织工程硅酸钙/聚二苯二甲酸钙的发展。硅酸钙(CZS)纳米颗粒被添加到多碳酸酯(PCL)多孔支架中,以增强其生物学和机械性能,同时对所得的性质进行了广泛的研究。在样品的熔点中没有发现显着差异,而包含生物陶瓷的样品的结晶温度点从36.1升至40.2°C。根据我们的结果,将CZS含量从0 wt。%(PC40)增加到多孔支架(孔隙率约为55-62%),将抗压强度从2.8 mpa提高到10.9 MPa。此外,SBF溶液中的磷灰石形成能力通过增强CZS百分比而显着增加。根据MTT测试结果,与纯PCL相比,PC40中MG63细胞的生存能力明显改善(约29%)。这些发现表明,3D打印的PCL/CZS复合支架可以成功制造,并显示出作为骨组织工程应用的植入物材料的巨大潜力。
在培养Paramecia时,您实际上是在创造一种生态学,其中微生物繁衍生息。除了Paramecia以外还有许多其他生物(即bdelloid rotifer,对在相同条件下壮成长的斑马鱼幼虫无害,因此监测您的培养物很重要,以确保您没有引入任何不需要的生物体,例如Coleps。常规监测Zirc的培养物以存在机会性生物。我们的菌落中存在一小部分的bdelloid和Vorticella rotifer。旋转器是斑马鱼的已知食物来源。虽然旋转器不损害帕拉西亚培养物,但我们偶尔在Zirc培养物上进行连续稀释液,以降低旋转液水平。在您自己的设施中,可以随时对既定文化进行连续稀释,并确保如果发生污染,则可以确保殖民地的清洁度。如果您对自己在文化中看到的任何东西有疑问或在殖民地中观察到的任何东西,请随时通过zirc@zebrafish.org与我们联系。准备
摘要:金属有机框架(MOF)代表了最有前途的多孔固体之一,用于控制和减少温室气体排放。研究表明,开放金属位点(OMS)与二氧化碳强烈相互作用,因此是CO 2捕获的有效结合位点。但是,许多具有OMS的MOF缺乏框架稳定性,并且通常具有较高的再生温度。为了寻求解决稳定性问题的方法,我们通过通过ZR-TCPB-COOH上的质子交换金属离子,通过ZR-TCPB-COOH在ZR-TCPB-COOM(M = M = M = Alkali/Alkaline Earth Metal)中设计了一系列。原始的MOF(ZR-TCPB-COOH)具有非常强大的框架。PSM过程不会恶化框架稳定性,而是创建与二氧化碳形成牢固键的金属结合位点。结果表明,在低CO 2压力下,使用ZR-TCPB-COOM大大增强了吸收量,并且趋势趋于增加原子数(li + 在室温下N 2上的CO 2也可以实现高吸附选择性(CO 2 /N 2 IAST选择性(15:85)= 539.5)。 这种方法提供了一种可行的方法来提高CO 2捕获能力,尤其是在低浓度下。在室温下N 2上的CO 2也可以实现高吸附选择性(CO 2 /N 2 IAST选择性(15:85)= 539.5)。这种方法提供了一种可行的方法来提高CO 2捕获能力,尤其是在低浓度下。
通过催化木质素去聚物的产生芳香单体的努力在历史上一直集中在芳基 - 醚键裂解上。然而,木质素中很大一部分的芳族单体与各种碳 - 碳(C - C)键相连,这些碳(C - C)键更具挑战性地裂解和限制木质素去聚合物的芳族单体产量。在这里,我们报告了一种催化自氧化方法,以从木质素衍生的二聚体和松树和杨树中的低聚物中裂解C - C键。该方法将锰和锌硅盐用作乙酸中的催化剂,并产生芳香族羧酸作为主要产物。在工程化的假单胞菌putida kt2440的菌株中,将含氧单体的混合物有效地转化为顺式 - 核酸,该菌株在4位时进行芳族O-二甲基化反应。这项工作表明,使用MN和ZR的木质素自氧化提供了一种催化策略,以提高木质素的宝贵芳族单体的产量。
过渡金属牙花会由于其独特的晶体结构而组成了许多有趣的超导体,这是由胎原子的化学键合引起的[1-6]。最近,发现带有配方SC 6 MTE 2的三元扫描库是一个新的D-电子超导体家族,在各种过渡金属元件的情况下表现出超导性(M = FE,CO,CO,NI,RU,RU,RH,RH,RH,OS和IR)[7]。在M = Fe中实现T C = 4.7 K的最高临界温度,而T C的M = Fe,Co和Ni的顺序下降。SC 6 MTE 2具有M = 4 d和5 d过渡金属的材料显示较低的t c 〜2 k。根据第一原理计算,Fermi Energy E F处的SC 6 Fete 2的电子状态主要由SC和Fe 3 D轨道组成[7]。在其他M情况下,M D轨道的贡献不如SC 6 FETE 2中的Fe 3 D轨道的贡献不那么重要,这表明Fe原子的3 d电子在实现SC 6 Fete 2中最高的T C中起着重要作用。相比之下,SC 6 MNTE 2,其中Mn 3 D电子在E f时与SC 6 Fete 2相同的电子状态显着促进了电子状态,并未显示超导性,这可能是由于Mn 3 D电子的强磁性引起的[7]。因此,SC 6 MTE 2显示了一个特征M的依赖性,但是当Scandium被其他元素取代时,尚不清楚出现哪种电子特性。