摘要:颤抖的运动现象,德语中被称为Zitterbewegung(ZBW),一直吸引了科学家多年。本研究报告使用长波模型对扶手椅型石墨烯条的这种情况进行了理论分析,根据海森伯格表示,确定了࢞ෝ和࢟ෝ方向的位置操作员。高斯分布函数用作伪自旋波函数的表示。检查了石墨烯纳米乙烯的宽度和波矢量KX对该现象的振荡值的影响以及多种石墨烯层。选择了这种特定的石墨烯纳米替比,因为它的边缘效应最小,使其可以充当具有可控能隙的半导体材料。因此,可以通过传导和价能带之间的干扰来实现这种现象。进行了一系列的分析和数学数学计算,从而导致以下发现:这种现象首先是在这种石墨烯纳米纤维中出现的,在大约30个方向上出现在大约30个方向上,以实现和不同的值。六边形石墨烯格子有可能藏有电子的可能性。其次,发现表明电子波包的振荡是暂时的和双向的,在所有层中均表现出半规则周期性的宽度====的宽度周期性。振荡值随波数据包的宽度而上升。在这里很明显跳跃能量参数的影响。第三,当石墨烯层的数量上升时,由于层之间的电子传输而出现了称为Altrach区域的区域。这项研究工作提供了对石墨烯条中Zitterbewegung现象的理论见解,代表了该领域的适度补充。关键字:石墨烯;扶手椅石墨烯纳米甲(Agnrs);颤抖的运动;电子的波数据包; ZBW。
1相对论量子力学1 1.1 DIRAC方程和矩阵。。。。。。。1 1.1.1狄拉克矩阵的结构。。1问题1:自由狄拉克粒子在旋转下是否服从符号?。。。。。。。。。。4 1.2 Pauli方程。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5 1.2.1 Dirac方程及其解决方案。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5 1.2.2 Pauli方程的推导。 6 1.3 dirac理论中氢原子的光谱。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 8 1.3.1Schrödinger理论中的氢样原子。 。 。 。 。 。 。 。 8 1.3.2狄拉克理论中运动方程。 。 。 。 。 。 。 。 。 。 。 。 。 。4 1.2 Pauli方程。。。。。。。。。。。。。。。5 1.2.1 Dirac方程及其解决方案。。。。。。。。。。。。。。。。5 1.2.2 Pauli方程的推导。6 1.3 dirac理论中氢原子的光谱。。。。。。。。。。。。。。。。8 1.3.1Schrödinger理论中的氢样原子。。。。。。。。8 1.3.2狄拉克理论中运动方程。。。。。。。。。。。。。。。9 1.3.3狄拉克理论中的能量谱11 1.3.4相对论频谱数字。。。。。。。。。。。。。。。。13 1.4 klein悖论 - 从潜在障碍物中反映了dirac的反射。。。。。。。13 1.4.1溶液的自由狄拉克粒子。13 1.4.2从潜在的屏障中反射大量狄拉克。。。16 1.4.3从潜在的屏障中反射无质量的零部分。。。24 1.5 Zitterbewegung。对速度运算符的追求。。。。。。。。。。。。。。。。。。27 1.5.1海森伯格图片。。。。。。。。27 1.5.2速度操作员。。。。。。。。。28 1.5.3物理状态的速度运算符的期望值。。30
它被打破了,修复了David Maker关键词,Mandelbrot集,Dirac方程式,指标摘要,在1928年Dirac在1928年使他的方程式(1)平面空间(2)。,但空间通常不是平坦的,有力量。因此,在过去的100年中,人们不得不试图通过在仪表力量之后添加临时累积的量规力来弥补这一错误,直到基本理论物理学成为一堆混乱,火车残骸,一堆垃圾堆。因此,他们永远可以做的一切就是重新排列该垃圾堆,在最基本的理论物理学*,..永远。我们死了。顺便说一下,请注意,newpde(3)g µÖ(k µ µ)¶y /¶x µ =(w / c)y不是平坦的空间(4),因此可以解决此问题(5)。参考(1)g µ¶y /¶x µ =(w / c)y(2)球形对称性:( gxökxx dx+ g y ik y yy dy+ g z z z z z+ g zz dz+ gtökttt idt)2 = zz = k tt = 1是平坦的空间,minkowski,如他的狄拉克方程式(1)。(3)newpde:g µÖ(k µ µ)¶y /¶x µ =(w / c)y,e,v。因此,我们不仅丢弃k µn(如参考文献1所做的那样)(4)在这里k o = 1-r h /r = 1 /k rr,r h =(2e 2)(2e 2)(10 40 n) /(mc 2)。n = .. -1,0,1,..分形尺度(下一页)(5)此NEWPDE K IJ包含一个Mandelbrot集(6)E 2 10 40 N n th fractal量表源(图1)术语(FIG1)项(来自等式13)也成功统一了理论物理学。n = 1个Zitterbewegung谐波坐标和Minkowski公制submanifold(长时间扩展)获得了我们观察到的DE Sitter Ambient Metric(D16,6.2)。等式。 4甚至为我们提供了时空r,t。 我们修复了它。等式。4甚至为我们提供了时空r,t。我们修复了它。例如:对于n = -1(即,e 2 x10 -40ºgm e 2)k ij然后通过检查(4)schwarzschild metric g ij;因此,我们刚刚从一个线圈中得出了一般相对论和重力常数g,n = 1(r r c而言,根据Schrodinger的1932年论文,没有观察到它。n = 0 newpde r = r h 2p 3/2状态复合3 e是baryons(不需要qCD),而新pde r = r h = r h复合e,v是4个标准的electroweak模型玻色子(4 eq.12 eq.12rotagations®ch.6),n = 0 n = 0,n = 0 n = 0 n = 0 n = 0 n = 0 n = 0,没有较高的taylor expliiot and lime gym gyk ij os o i ij os out us ij out,重新规范化和无限态度(Ch.5):这非常重要,因此K UV提供了NEWPDE的一般协方差。因此,我们仅通过检查(弯曲的空间)Newpde而没有仪表来获得所有物理学!那么,NewPDE从哪里固定了?所有数学家都知道,凯奇(Cauchy)序列的限制是库奇(Cauchy)的真实数字(Cantor 1872)。因此,我们在这里所做的就是证明我们通过使用它来推导相关的有理cauchy序列来假设实际#0。我们之所以这样做,是因为相同的假设(实际#0)数学也意味着基本的理论物理学(例如,“结果”中的newpde)使它成为最终的Occam的剃须刀假设(0)暗示着最终的物理理论,这确实是一个重要的结果。没有什么比假设0更重要的了。