和循环寿命。但是,LIB遭受了李金属的易燃性,毒性,成本和稀缺性的问题。[4,5]基于水溶液和地球丰富元素的充电电池被认为是当前LIB的更可持续的替代品。水性金属离子电池本质上是安全的,环保的,便宜的,并且能够在大型电流下运行。[6–8]水锌离子电池(ZIB)是一种类型,具有高理论能力(820 mAh g-1)和金属锌的低电化学潜力(-0.76 v Vs标准氢气触发),[9-13],但[9-13],但对于ZIB的高度稳定的摩托模具仍是ZIB的高度稳定性。普鲁士蓝色类似物(PBA)具有X M [Fe(Cn)6] Y·N H 2 O(0 PBA的容量可以达到120 mAh g-1 [14-17],并且由于存在两对氧化还原夫妻,并且稳定性非常出色,并且稳健的3D开放式框架结构允许插入各种碱离子离子而无需分解。 [18–20]但是,PBA仅为Zn 2 +阳离子(通常小于80 mAh g-1)提供相对较低的特性容量,而Zn 2 +的插入可以导致不受控制的相变和导致性能降级。 [9,21,22] Liu等。 首先提出了使用菱形Zn 3 [Fe(CN)6] 2(ZnHCF)阴极的ZiB,该阴极的容量低于65.4 mAh g -1,在100个周期后的能力保留76%。 [24] Mantia等。 [30]PBA的容量可以达到120 mAh g-1 [14-17],并且由于存在两对氧化还原夫妻,并且稳定性非常出色,并且稳健的3D开放式框架结构允许插入各种碱离子离子而无需分解。[18–20]但是,PBA仅为Zn 2 +阳离子(通常小于80 mAh g-1)提供相对较低的特性容量,而Zn 2 +的插入可以导致不受控制的相变和导致性能降级。[9,21,22] Liu等。首先提出了使用菱形Zn 3 [Fe(CN)6] 2(ZnHCF)阴极的ZiB,该阴极的容量低于65.4 mAh g -1,在100个周期后的能力保留76%。[24] Mantia等。[30][23]合成了一个立方结构PBA(CUHCF)用于Zn 2 +存储,该阴极完成了100个循环,其容量为56 mAh g-1。表明,CuHCF中的容量衰减可以归因于相位转变为第二相,而该相位在电脑上的活性较小。[25,26]为了减少Zn 2 +插入产生的相变影响,研究人员采用了低甚至零Zn 2 +浓度的电解质,以使NIHCF // Zn,[27] Cuhcf // Zn,[28],[28],[28]和NAFE-PB // Zn [29] [29] [29] hybrid-ion-ion-ion-ion-ion-ion-ion-ion-ion。尽管如此,尽管这些阴极中的Zn 2 +的存储能力仍然很低,尽管通过增加扫描电压来改善周期寿命。
锌(Zn)是最重要的微量营养素之一,可以增加植物的生长,产量属性,产量,质量和营养价值。这项研究旨在评估硫酸锌(ZnSO 4·7H 2 O)在不同浓度(0、5、10、15和20 kg HA -1)对饲料的饲料产量,质量和矿物质含量中的浓度(pisum satssp)中的作用。arvense(L。)poir。](cv。Özkaynak)在半干旱的气候条件下。响应变量包括茎直径,植物高度,绿色草料产量,干草产量,粗蛋白(CP),酸洗涤剂纤维,中性洗涤剂纤维,总磷(P),钾(K),钙(CA)和镁(mg)。由于研究的结果,确定从土壤中施用的锌剂量对绿色草料产量(P <0.05)和CP(P <0.01),总P(P <0.05)和Ca(P <0.01)(P <0.01)具有有意义的影响。在10 kg ha -1的锌剂量下获得了最高的43.60 t ha -1。尽管没有显示出统计学上的显着变化,但与同一剂量下的对照相比,干草产量的改善也得到了改善。在研究中,锌受精的提高饲料比率显着增加。此外,土壤锌的应用还为反刍动物提供了足够的大量营养成分。根据研究结果,得出的结论是,在土壤中有低水平提取的锌的存在下,将10 kg Zn HA -1应用于草料豌豆,将为觅食生产,草料质量和营养价值提供明显的增加。
已经证明,锂,钠,钠和钾离子在水溶液中,可以使S电极的动力学和完整电池的性能受益。10,17个流量电池(FBS)将满足上述要求。18 FBS最具吸引力的特征是设计灵活性,使功率和能量的设计灵活性克服了水溶液电池(AZSBS)的低排放高原问题。Zn-S夫妇已经在实心悬架流量电池中进行了测试,并且仅显示潜在电流响应,没有骑自行车的性能。19 Zn,S和Zn的固体到固相变的缓慢固体转移反应阻碍了骑自行车的性能。使用阳离子交换膜可以使Zn – S系统可充电,避免同时避免使用Zn-S系统,像多硫化物 - 碘,20多硫化物 - 二酰胺,21多硫化物 - 锰酸22和S-Manganese 23 FBS一样。 尽管已广泛开发了Zn-S电池,基于Zn的FBS,但尚未探索Zn – S流动系统。 24在本文中,我们首次演示了碱性Zn -s Flow Battery(AZSFB)。 溶解在碱性溶液中的活性材料,在5 mA cm 2时使排放高度为0.5 V。 同时,通过两步过程制备了无粘合镍的电极,以改善S氧化还原反应的动力学。 所制备的电极由微纳米化缺陷和镍氧化物颗粒组成,在半细胞测试和FBS中,S氧化还原反应的极化大大降低了。像多硫化物 - 碘,20多硫化物 - 二酰胺,21多硫化物 - 锰酸22和S-Manganese 23 FBS一样。尽管已广泛开发了Zn-S电池,基于Zn的FBS,但尚未探索Zn – S流动系统。24在本文中,我们首次演示了碱性Zn -s Flow Battery(AZSFB)。溶解在碱性溶液中的活性材料,在5 mA cm 2时使排放高度为0.5 V。同时,通过两步过程制备了无粘合镍的电极,以改善S氧化还原反应的动力学。所制备的电极由微纳米化缺陷和镍氧化物颗粒组成,在半细胞测试和FBS中,S氧化还原反应的极化大大降低了。因此,使用该正电极的AZSFB的电压效率(VE)达到了10 mA CM 2时的78%,几乎是使用epristineGrapheenefelt(GF)Electerode.withlowCostandHigh理论能力的两倍,该AZSFB具有巨大的进一步研究潜力。在构造新系统FB之前,进行了环状伏安法(CV),以测试Active
仅贡献了全球粮食安全的最小改善。令人遗憾的是,目前,在政治上具有的监管障碍正在采用下一个基因组创新,基因组编辑,其含义也在本文中进行了讨论。从2005年到2015年,目睹了十年来全球粮食不安全的减少,但遗憾的是,该人随后发生了上升。为什么这样?原因归因于气候变异性,生物和非生物压力,缺乏获得创新技术的机会以及在决策过程中的政治干预。该评论强调了在监管机构批准中的政治干预如何对采用创新的采用,增强农作物品种的采用,从而限制粮食不安全经济中的粮食安全机会。
温度和有问题的土壤。高粱是最便宜的微量营养素来源之一。因此,高粱生物强化是重中之重。本综述将讨论高粱作为食物和能量来源的价值,以及其谷物结构如何促进最大程度地利用积累的微量营养素。此外,还有遗传控制/基因、铁和锌浓度的数量性状位点 (QTL)、高粱中铁和锌的杂种优势研究、铁和锌与其他农艺性状之间谷物性状关联的遗传变异,以及根据亲本系性能预测铁和锌杂交性能的潜力。还简要介绍了产品开发和近期消费生物强化高粱的前景。关键词:基因作用;一般配合力;杂种优势;营养敏感农业;数量性状位点;特定配合力
此外,通过施用微量元素[硼 (B)、铁 (Fe)、钼 (Mo)、镍 (Ni) 和锌 (Zn)] 可能诱导抗氧化酶的活性,以减少 ROS 的损害。微量元素对植物生长至关重要。此外,适当浓度的硼、铜、铁、锰 (Mn)、钼、镍、硒或锌可激活内源性抗氧化酶和非氧化代谢,从而减轻 ROS 的损害 (Tavanti 等人,2021 年)。与阴性对照相比,土壤施用锰和锌,或镁 (Mg) 和硼,以及叶面喷施锰、锌、Mg 和钼可显著缓解 HLB 症状 (Shen 等人,2013 年;Atta 等人,2021 年;Zhou 等人,2021 年)。然而,一旦 HLB 对树木造成严重损害,对 HLB 管理的积极作用似乎就会受到限制(Gottwald 等人,2012 年)。
图2。生物启发的Zn@C电极的制造以及腐蚀和氢的耐药性评估。(a)生物启发的Zn@C电极的SEM图像后24 h聚合和热解后,(b)生物启发的SEI层的横截面视图。(c)TEM图像和碳球涂层的相应元素映射。(d)在2 m ZnSO 4中裸露锌电极的腐蚀表面的SEM图像7天,(e)生物启发的Zn@C电极的腐蚀表面,(F)xrd xrd表征在裸露的Zn电极的腐蚀表面上,并在50个cycles the cycm cycm -2 cer in 1 ma cm -2之后,(g)cy cy cy cy in Zn电极和Zn@C电极基于两个电极细胞,(H)裸Zn和生物启发的Zn@C阳极的接触角。碳球的沉积可以限制在选定区域,例如在
通过SURTEC:SURTEC 617 F量身定制的溶液提高磷酸化过程的效率是完美的选择。这是三燃锌磷酸化的行业标准。可持续性和过程成本优化是推出高度创新的模块化Zn磷化方法的驱动力。注意整个价值链Surtec不仅在化学流中确定了节省电位,而且还可以最大程度地减少能量和水的消耗以及最大的吞吐量。和最重要的是,无论是先前的E型或粉末外套,模块化的Zn磷化过程都可以确保Zn磷酸操作的高端性能。
摘要:在以线材为原料的各种增材制造技术中,电弧丝增材制造 (WAAM) 具有较高的材料沉积速率,但尚未在锌合金中建立应用。与传统的永久性金属生物材料相比,锌合金可用作可降解生物材料。在这项研究中,采用 WAAM 加工商用纯锌以获得近乎致密的部件,并将通过 WAAM 加工的锌获得的性能与锻造 (WR) 锌样品进行了比较。发现 WAAM (41 ± 1 HV0.3) 部件的微观结构和硬度值与 WR (35 ± 2 HV0.3) 部件的微观结构和硬度值相似。体 X 射线衍射纹理测量表明,与 WR 对应物相比,WAAM 构建物表现出重纹理微观结构,在平行于构建方向 (BD) 的方向上峰值强度约为 <3 3–6 2> 或 <0 0 0 2>。 WAAM(0.45 mmpy)和 WR(0.3 mmpy)样品在模拟体液 (SBF) 中的腐蚀速率相似。在长达 21 天的时间内,WAAM 样品在 SBF 中的重量损失测量值略高于 WR 样品。MC3T3-E1 前成骨细胞在含有 WAAM-Zn 降解产物的培养基中以类似于 WR-Zn 的方式增殖,且表现健康。这项研究证实了通过 WAAM 处理 Zn 以用于生物可吸收金属植入物的可行性。
Zn 2+是大约850个人类转录因子所需的必需金属。这些蛋白质如何获得其必需的Zn 2+辅因子,以及它们是否对细胞中不稳定的Zn 2+池的变化敏感仍然是开放的问题。使用ATAC-SEQ进行可访问的染色质的区域,并结合转训练因子富集分析,我们研究了不稳定锌池的增加和减少如何影响染色质的可及性和转录因子富集。我们发现685个转录因子基序被差异富集,对应于507个独特的转录因子。在启动子与基因间区域的扰动模式和转录因子的类型截然不同,锌 - 纤维转录因子在升高的Zn 2+中强烈富集在基因间区域中。测试ATAC-SEQ和转录因子富集分析预测是否与转录因子结合的变化相关,我们使用ChIP-QPCR来实现六个p53结合位点。我们发现,对于六个目标,p53结合与ATAC-SEQ确定的局部可访问性相关。这些结果降低了不稳定锌的变化改变染色质的可及性和转录因子与DNA的结合。