锌金属电池 (ZnBs) 因其在水性电解质中的可操作性、Zn 含量丰富和可回收性而安全且可持续。然而,Zn 金属在水性电解质中的热力学不稳定性是其商业化的主要瓶颈。因此,Zn 沉积 (Zn 2 + → Zn(s)) 不断伴随着氢析出反应 (HER) (2H + → H 2 ) 和树枝状生长,进一步加剧了 HER。因此,Zn 电极周围的局部 pH 值增加并促进 Zn 上形成不活跃和/或导电性差的 Zn 钝化物质 (Zn + 2H 2 O → Zn(OH) 2 + H 2 )。这加剧了 Zn 和电解质的消耗并降低了 ZnB 的性能。为了推动 HER 超越其热力学电位(pH 0 时 0 V vs 标准氢电极 (SHE)),水包盐电解质 (WISE) 的概念已用于 ZnBs。自 2016 年发表第一篇关于 ZnB WISE 的文章以来,这一研究领域不断取得进展。本文概述并讨论了这一有希望加速 ZnBs 成熟的研究方向。本综述简要介绍了 ZnBs 中传统水性电解质的当前问题,包括 WISE 的历史概述和基本理解。此外,还详细介绍了 WISE 在 ZnBs 中的应用场景,并描述了各种关键机制(例如副反应、Zn 电沉积、金属氧化物或石墨中的阴离子或阳离子插入以及低温下的离子传输)。
摘要 水系锌离子电池因其高功率密度、本质安全、低成本和环境友好等优点,近年来受到了广泛的关注。然而,其能量密度低、循环寿命短等缺点严重阻碍了其应用,这主要归因于锌枝晶、界面副反应、水分解引起的电位窗口窄等问题,而这些问题都与水系电解液中Zn 2 +的溶剂化结构密切相关。因此,本文全面总结了近年来调控Zn 2 +溶剂化结构的策略的研究进展,特别是锌盐、非水系共溶剂和功能添加剂对Zn 2 +溶剂化结构及其对水系锌离子电池电化学性能的影响。此外,本文还对具有独特溶剂化结构的水系电解液的设计和商业化所面临的挑战和可能的解决方案进行了展望。
摘要:增加了从例如光伏和风能中存储间歇性可再生电力的需求,导致大量的大规模固定能量存储中的大量研发,例如,斑马电池(Na-Nicl 2固体电解质电池)。用丰富和低成本的Zn代替Ni,使斑马电池更具成本效益。然而,很少对此下一代斑马(Na-Zncl 2)电池系统进行研究,尤其是在其ALCL 3 -NACL-ZNCL 2二级电解质上。其特性(例如相图和蒸气压力)对于细胞设计和优化至关重要。在我们以前的工作中,一种用于熔融盐电解质选择的模拟辅助方法显示了其在熔融盐电池开发中的成功应用。此处使用相同的方法来研究ALCL 3 -NACL-ZNCL 2盐电解质的相图和通过事实TM和热分析技术(差速器扫描量热法(DSC)和最佳电池效果及其对电池性能的影响和放电机制的影响,其相位图和蒸气压力(差分扫描量热法(DSC)和效果。DSC和Optimelt结果表明,诸如熔化温度和相变的实验数据与模拟相图非常吻合。此外,事实TM模拟表明,随着ALCL 3的温度和摩尔分数的升高,盐蒸气压力显着增加。获得的相图和蒸气压将用于辅助电解质选择,电池设计和电池操作。
1。引言现代农业必须继续养活不断扩大的世界人口。为了支持不断增长的人群,已经采用了最大化生物量生产的策略。著名的例子之一是“绿色革命”,它显着提高了农作物的产量来消除饥饿。除了生物质的产量外,作物的营养价值是提供适当营养的另一个重要考虑因素。除了热量摄入量和诸如N,P,K和微量营养素之类的大量营养素外,Zn人类还依靠食品作物来获得某些微量营养素。由于饮食不足的微量营养素(例如矿物质和维生素)被视为“隐藏饥饿”而导致的营养不良。根际是植物根部与土壤之间的重要界面,当考虑植物与有益细菌之间的相互作用时,有助于可持续农业。大约35年前,克洛珀首先描述了促进植物生长的根瘤菌(PGPR)在植物生长和防御中的作用[1]。PGPR与植物根有关,在直接或间接促进植物生长中起着重要作用。生物铜质化和植物刺激是植物生长的直接启动子机制,可同时最大程度地减少化学肥料的使用并促进植物生长,以及具有生物防治和植物刺激性能的细菌,以增强植物中养分和疾病的控制。当前的情况例证了使用这些PGPR的植物 - 微生物相互作用领域的工作,该植物 - 微生物相互作用的工作重点是钉书钉作物的生物化。谁承认对人体正常功能至关重要的微量营养素,即。硒(SE),铁(Fe)和锌(Zn),并为PGPR介导的生物强化提供了很大一部分[2]。小麦是碳水化合物的重要来源。在全球范围内,当小麦作为全谷物食用时,它是人类食品中蔬菜蛋白的主要来源,是多种营养素和饮食纤维的来源[3]。在100克中,小麦提供了327公斤的食物能量,是多种必需营养素的丰富来源,例如蛋白质,饮食纤维,锌,铁,锰,磷和烟酸。几种B维生素和其他饮食矿物质的含量很大。小麦是13%的水,71%的碳水化合物和1.5%的脂肪。其13%的蛋白质含量主要是面筋。根据新蛋白质
1 基尔基督教阿尔布雷希特大学材料科学系、功能纳米材料系、工程学院,基尔,Kaiserstraße 2,D-24143 基尔,德国 2 摩尔多瓦技术大学计算机、信息学和微电子学院微电子和生物医学工程系纳米技术和纳米传感器中心,168 Stefan cel Mare str.,MD-2004,基希讷乌,摩尔多瓦共和国 3 中佛罗里达大学物理系,佛罗里达州奥兰多 32816-2385,美国 4 利兹大学化学学院,利兹 LS2 9JT,英国 5 石油和能源研究大学(UPES)工程学院物理系,Energy Acres 大楼,Bidholi,德拉敦 248007,北阿坎德邦,印度 6 材料科学系、合成和实际系结构,基尔基督教阿尔布雷希特大学工程学院,基尔,Kaiserstraße 2,D-24143 基尔,德国 7 材料科学系,多组分材料系主任,基尔基督教阿尔布雷希特大学工程学院,基尔,Kaiserstraße 2,D-24143 基尔,德国 8 弗劳恩霍夫硅技术研究所 (ISIT), Itzehoe, Fraunhoferstraße 1, D- 25524, 德国 9 乌得勒支大学地球科学系,Princetonlaan 8a, 3584 CB 乌得勒支,荷兰 * 通讯作者:O. Lupan 博士教授 ( ollu@tf.uni-kiel.de ; oleg.lupan@mib.utm.md ) 德国基尔大学;摩尔多瓦技术大学,摩尔多瓦; UCF,美国 David Santos-Carballal 博士(d.santos-carballal@leeds.ac.uk)英国利兹大学 L. Kienle 教授(lk@tf.uni-kiel.de)德国基尔大学 R. Adelung 教授(ra@tf.uni-kiel.de)德国基尔大学 A. Vahl 博士(alva@tf.uni-kiel.de)德国基尔大学 S. Hansen 博士(sn@tf.uni-kiel.de)德国基尔大学
摘要。ZnO 纳米粒子 (NPs) 用于光学、电子、传感、激光、光催化装置等。这些应用不仅依赖于形貌,还依赖于尺寸,可通过表面导向剂进行定制。在本研究中,我们研究了 4 个带有尿素/硫脲基团的三足配体(即 1、2、3 和 4)对表面改性 ZnO NPs(即 1Z、2Z、3Z 和 4Z)形貌的影响,这些配体分别在室温(30-40 C)碱性条件下合成。配体用于在室温下获得具有各种形貌的表面改性 ZnO。 1Z、2Z、3Z 和 4Z 分别观察到延伸的六边形纳米棒(* 2-3 微米长度和 * 400 纳米宽度)、层状(薄片自组装形成层状结构)、多分散盘状[微米级(2-3 微米)和纳米级(300-400 纳米)颗粒和纳米棒(1-1.5 微米长度和 130-165 纳米宽度)状形态。1Z 纳米棒具有尖端,而 4Z 纳米棒具有半圆形端部。已经通过罗丹明 B 染料降解评估了这些表面改性 ZnO NP 的光催化研究。
1化学系数学和自然科学学院,JL帕迪哈丹大学。Raya Bandung Sumedang Km.21,Kabupaten Sumedang 45363,印度尼西亚; u.pratomo@unpad.ac.id(U.P.); rapadhiaa30@gmail.com(R.A.P.); irkham@unpad.ac.id(I.I。); allyn@unpad.ac.id(A.P.S.)2东京大都会大学城市环境科学研究生院应用化学系,日本哈奇奥吉1-1 Minamiosawa,日本; jacob.mulyana@deakin.edu.au 3教育学院,艺术与教育学院,迪肯大学,伯伍德高速公路221伯伍德,伯伍德,VIC 3125,澳大利亚4研究中心,高级材料研究中心,国家研究与创新局,卡瓦桑·塞恩斯·塞恩斯·塞恩斯·塞恩斯·塞恩Habibie,Tangerang Selatan 15314,印度尼西亚5个合作研究中心,高级能源材料,国家研究与创新机构Institut Teknologi Bandung,Bandung 40132,印度尼西亚 *通信 *通信:Inda009@brin.go.div
1) 在研究范围内,抗拉强度和屈服强度随应变速率增加而增加。2) 屈服强度的变化趋势与抗拉强度非常相似。3) 延展性随应变速率增加而降低。4) 应变敏感性m对于Sn-9Zn-0.2Ag-0.6Sb为0.0831,对于Sn-9Zn-0.2Ag-0.8Sb为0.1455,对于Sn-9Zn-0.6Ag-0.2Sb为0.1274,对于Sn-9Zn-0.8Ag-0.2Sb为0.1346。5) 所有m值都小于0.3,因此本文研究的无铅焊料均不会出现超塑性行为。6) 需要进一步研究这些焊料合金在不同温度和应变速率下的拉伸性能,以更详细地了解热力学硬化响应。
摘要:量子点是胶体半导体纳米晶体,显示尺寸依赖性电子和光学特性。这些材料是量子力学效应的视觉演示。在这里,我们为本科/学士学生提供了一项实验室练习,以介绍胶体纳米晶体和量子点。学生合成了三种尺寸的磷化磷化物(INP)纳米晶体,并执行用硫化锌(INP/ZNS)壳壳壳的磷化磷化物核心的一个核/壳合成。获得的量子点的特征是定量UV- VIS,光致发光和1 H NMR光谱。学生熟悉了几个概念:纳米晶体合成,胶体,啤酒 - 兰伯特法,量子限制,光致发光和表面化学。对于每个概念,都提供背景信息,为该报告提供了针对学生和教师的全面介绍。磷化物是在本科实验室中处理的一种更安全的材料,与硒化镉(CDSE),氯康省溴化物(CSPBBR 3)或硫化铅(PBS)纳米晶体相比。关键字:动手学习/操纵,实验室教学,无机化学,纳米技术,上级本科生,材料科学■简介
在不同领域的关系和应用。1–3由两个或更多供体中心组成的多齿配体可以连续延伸以特殊的模式延伸以产生一种聚合物形式,称为辅助聚合物(CPS); 4-12该术语是由J. C. Bailer在1967年引入的。13主要是,二羧酸盐和双吡啶基有机化合物用于设计CPS。CP的尺寸在很大程度上取决于有机连接器,金属节点和反应条件的性质,并且可以从1d延伸至2D和3D。在2D或3D CP中存在适当的孔隙度已定义了一种创新的材料,称为金属有机框架(MOF)。13–15 CPS/MOF,一类带有引人入胜的结构结构和拓扑结构的杂交多功能晶体材料已被广泛用于气体存储和分离,催化,感应,磁性,药物,药物递送,生物技术,生物技术,电导率,蛋白电导率,智能设备的制造等目前,全球主要的挑战是停止C级排放,探索绿色能源资源并保持零能源损失。 具有智能电导率和可持续性的材料高度优势。 有了这个期望,许多研究小组致力于将许多此类材料设计为目前,全球主要的挑战是停止C级排放,探索绿色能源资源并保持零能源损失。具有智能电导率和可持续性的材料高度优势。有了这个期望,许多研究小组致力于将许多此类材料设计为