摘要:快速检测氢气泄漏或其在不同环境中的释放,尤其是在大型电动汽车电池中,是感应应用的主要挑战。在这项研究中,详细报告并详细讨论了ZnO:EU纳米线阵列的形态,结构,化学,光学和电子特征。尤其是,研究了电化学沉积过程中不同欧盟浓度的影响以及感应特性和机制。令人惊讶的是,通过在沉积过程中仅使用10μMEU离子,与未源性ZnO纳米线相比,气体响应的值增加了近130倍,我们发现单个ZnO:EU纳米线设备的H 2气体响应约为7860。此外,用紫外线(UV)光和一系列测试气体测试了合成的纳米线传感器,显示了约12.8的UV响应性,对100 ppm H 2气体的uv响应性良好。显示出双模式纳米传感器可同时检测紫外线2气体,以选择性检测紫外线照射期间H 2及其对感应机制的影响。这里的纳米线传感方法证明了使用如此小的设备检测到苛刻的小规模环境中的氢泄漏的可行性,例如,在移动应用程序中堆叠了电池组。此外,通过基于密度的功能理论模拟来支持所获得的结果,该模拟强调了稀土纳米颗粒在氧化物表面上的重要性,以提高气体传感器的灵敏度和选择性,即使在室温下,也允许,例如,允许较低的功耗消耗和较低的量。关键字:EU 2 O 3,ZnO,传感器,氢,电化学沉积
使用ZnO纳米颗粒层生产染料敏化的太阳能电池为潜在的低成本制造提供了几个优点,并适合将来的成本效益工业生产。使用ZnO纳米颗粒和自然染料的生产,从九重二指从九重二指纳米颗粒和带有红色,紫罗兰色和肾上腺素的mutabile labill中提取的天然染料。目的是通过通过沉浸式方法形成带有有机染料的ZnO薄膜来创建DSSC的光阳极。使用医生刀片技术将制造的电极涂在玻璃基板上,然后将电极浸入染料溶液中。根据其将阳光转化为电能的能力,对制造的太阳能电池的性能进行了分析。参数(例如效率,电流 - 电压特性和功率输出)的测量和评估。关键字:染料敏化的太阳能电池;制造;特征。
由于它们具有出色的机械品质,疗法稳定性以及充当碳二氧化碳,氧气和芳香化学物质的有效障碍的能力,因此基于合成石化的聚合物的需求更大。,基于石化材料作为包装材料的合成聚合物选择的主要因素是其广泛的利用可用性和相对较低的成本。合成基于石化的聚合物的抽签是,尽管它们在包装材料中广泛使用,但它们的生物降解性差,使它们成为使用后的重要垃圾来源。大量极其有害的排放,堆肥问题以及二氧化碳周期的变化是这种环境威胁的主要原因。6此外,由于社会事务的局限性和技术困难,在许多国家中很少回收丢弃的包装塑料,从而导致大量使用的用过的塑料材料要么倾倒在垃圾填埋场中,要么添加到周围的环境周围的垃圾中,最终使环境平衡了环境平衡。因此,这种现象吸引了许多研究人员的兴趣,这些研究人员致力于创建活跃,可持续的包装材料。因此,除了保质期,成本和保护外,包装设计还应考虑用户友好和环境可持续性。因此,检查由自然降解聚合物制成的包装材料引起了更多的关注。这是向更绿色,更可持续的世界迈进的基本运动。在可生物降解的生物材料中,多羟基烷烃(PHAS)吸引了特定的注意。PHA是热塑性,生物相容性和羟基衍生脂肪的可生物渐变微生物聚合物
1 基尔基督教阿尔布雷希特大学材料科学系、功能纳米材料系、工程学院,基尔,Kaiserstraße 2,D-24143 基尔,德国 2 摩尔多瓦技术大学计算机、信息学和微电子学院微电子和生物医学工程系纳米技术和纳米传感器中心,168 Stefan cel Mare str.,MD-2004,基希讷乌,摩尔多瓦共和国 3 中佛罗里达大学物理系,佛罗里达州奥兰多 32816-2385,美国 4 利兹大学化学学院,利兹 LS2 9JT,英国 5 石油和能源研究大学(UPES)工程学院物理系,Energy Acres 大楼,Bidholi,德拉敦 248007,北阿坎德邦,印度 6 材料科学系、合成和实际系结构,基尔基督教阿尔布雷希特大学工程学院,基尔,Kaiserstraße 2,D-24143 基尔,德国 7 材料科学系,多组分材料系主任,基尔基督教阿尔布雷希特大学工程学院,基尔,Kaiserstraße 2,D-24143 基尔,德国 8 弗劳恩霍夫硅技术研究所 (ISIT), Itzehoe, Fraunhoferstraße 1, D- 25524, 德国 9 乌得勒支大学地球科学系,Princetonlaan 8a, 3584 CB 乌得勒支,荷兰 * 通讯作者:O. Lupan 博士教授 ( ollu@tf.uni-kiel.de ; oleg.lupan@mib.utm.md ) 德国基尔大学;摩尔多瓦技术大学,摩尔多瓦; UCF,美国 David Santos-Carballal 博士(d.santos-carballal@leeds.ac.uk)英国利兹大学 L. Kienle 教授(lk@tf.uni-kiel.de)德国基尔大学 R. Adelung 教授(ra@tf.uni-kiel.de)德国基尔大学 A. Vahl 博士(alva@tf.uni-kiel.de)德国基尔大学 S. Hansen 博士(sn@tf.uni-kiel.de)德国基尔大学
1 IOPFE Institute,St.26,圣彼得堡194021,俄罗斯; cabri@mail.ru(V.S.G. ); zumisi@gmail.com(D.A.K. ); Sviatoslab。 ); ); pkervycova@mail.offe(P.D.C. ); (S.I.P. ); milk@mail.io.ru(S.A.R. ); ); (N.D.P. ); 2物理系。 vsysoev@stu。 ); solatinin1994@gmail.com(M.A.S. ); 柏林,柏林和能源,柏林,柏林,德国; 4 NRC“学院研究所”,学院学院。 1,莫斯科123182,俄罗斯;1 IOPFE Institute,St.26,圣彼得堡194021,俄罗斯; cabri@mail.ru(V.S.G.); zumisi@gmail.com(D.A.K.); Sviatoslab。);); pkervycova@mail.offe(P.D.C.); (S.I.P.); milk@mail.io.ru(S.A.R.);); (N.D.P.);2物理系。 vsysoev@stu。); solatinin1994@gmail.com(M.A.S.);柏林,柏林和能源,柏林,柏林,德国; 4 NRC“学院研究所”,学院学院。1,莫斯科123182,俄罗斯;
Grafena氧化物(GO)在各种应用中具有非常广泛的潜力,并且其应用之一可以用作光催化剂。从以前的研究中,使用金属氧化物的Go和Go Composies可以降解可以污染水域的液体废物有机染料。由纺织工业活动产生的着色剂之一是Rhodamin B(RHB)。在这项研究中,使用鹰嘴豆修饰方法从石墨进行了GO的合成。使用NH 4 OH溶液通过沉淀法制造了GO/ZnO复合材料,该解决方案得到了超声处理过程的辅助过程,其中Zn(No. 3)2.6H 2 O用作使GO/ZnO复合材料的前体。降水导致的沉积物被中和,然后在70℃加热20小时以获取GO粉末。通过以70℃加热复合沉积物8小时而产生GO/ZnO粉末。XRD样本结果证实形成的GO并不完美。FTIR结果证实,GO样品具有羧基,羰基,羟基和环氧函数组。通过辐射可见的射线和阳光,在RHB上以60至100 ppm的浓度在RHB上测试了两个样品的光疗过程。光催化剂质量在0.01至0.05克的范围内变化,辐照时间为1至5小时。GO/ZnO样品的光有关测试结果显示,60 ppm RHB溶液的脱色百分比达到66.27%,光催化剂质量为0.05克,持续5小时。虽然GO样品在相同的质量和照射时间下将RHB 60 ppm溶液分解为99.97%。
依赖于金属绝绝构成结构设备中电阻开关现象的两末端回忆设备最近引起了人们对实现下一代记忆和神经形态架构的极大关注。[1-4]的身体机制取决于电化学效应和纳米离子工艺涉及金属原子溶解在电芯片中溶解的金属溶解的金属活性电极,并导致金属群体在互联网中的转变,以使得Metal the Is condrative the Is the Is the Is the Is the Metallix the Mentals Ondallic the Mentals the Mentals contallic contallix contallix contallix contallix contallix contallix contallix的迁移。[5,6]先前的报道表明,电阻开关机制受外在影响的强烈影响,例如存在可以扩散并吸附在绝缘基质中的水分。[7,8,17,18,9-16]在术语中,水分对电阻切换细胞功能的影响被观察到取决于所涉及材料的特定化学/结构特性。[7]在金属氧化物中,半导体ZnO被广泛利用为用于实现电子设备的活性材料。由于其特殊的光子,机械和电子特性以及生物相容性和环保性特征,ZnO也被认为是广泛应用的有前途的候选人,包括现场效应晶体管,压电电透射器,光伏,传感器,传感器和照片检测器。[19-24]也,对ZnO的兴趣与具有多种形态的可能性有关,包括纳米线,纳米棒,纳米生物和纳米片。[25,26]在此框架中,在包括纳米线/纳米棒在内的ZnO纳米结构中观察到了电阻性开关现象,[27-29]纳米岛[30],以及在具有不同沉积技术的广泛薄膜中。[31,32,41,33-40],在电阻开关设备领域,由于其高透明度可见光,[37-39]也充分利用了其辐射硬度,因此非常感兴趣地致力于ZnO。[42]
吸附α -AL 2 O 3(0001)ZnO(101̅0)Al 2 O 3 /ZnO(101̅0)E ADS(EV)δQ(E -)E ADS(EV)δQ(E -2) 10 O 2 - 1.531 0.019- 0.895 0.044 al -0.652 - 0.09.2-7 Zn 428 - 0。674-0。674-0.661AL -0.226 -0.041 −0.041 0.0 -027 O 11 - 1.138 0.013 al -0.103 - 0.005 Zn -1.226 0.034
已被尝试用作焊料合金的增强体,例如 TiO2、ZnO、SiC、ZrO2、Al2O3、Fe2O3、Si3Ni4、