氧化锌(ZnO)粉末已成为白色油漆色素和工业加工化学品的中流型。然而,20世纪中叶对ZnO产生了兴趣,这是由于对其独特和有前途的特性的认可,包括生产第一笔铜管金属,出于医疗目的的纯化ZnO的发展,甚至是早期炼金术士试图将基准金属转换为金。科学界和行业领导者都激发了这种新的兴趣。这些属性具有超出传统用途的不同应用的巨大潜力。Zno已成为下一代电子设备的前进者。对ZnO的研究在1990年和2010年经历了显着的峰值。在2010年,超过5,000个出版物包含标题,摘要或关键词中的ZnO。发生这种情况是因为ZnO具有广泛的特性,具体取决于掺杂,包括从金属到绝缘的电导率,高透明度,压电性,宽带间隙半导体特性,室温铁磁磁性以及明显的磁电磁和化学感应效应。由于这些属性,相关出版物的数量已大大增加。
方程:𝐸𝐸 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = (𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡 −𝑎𝑎𝐸𝐸 𝑍𝑍𝑍 −𝑏𝑏𝐸𝐸 𝑂𝑂 −𝑐𝑐𝐸𝐸 𝐻𝐻𝐻𝐻 )/𝑁𝑁 ,其中 E 形式是固体的内聚能
克里斯蒂安·卢潘(Cristian Lupan),Rasoul Khaledialidusti,Abhishek Kumar Mishra,Vasile Postica,Maik-Ivo Terasa等人。PD功能化ZnO:用于室温氢气的欧盟柱状膜:一种合并的实验和计算方法。ACS应用材料和界面,华盛顿特区:美国化学学会,2020,12(22),第24951-24964页。10.1021/acsami.0c02103。hal-02999519
化学杀虫剂的环境和人类健康风险已引发了广泛的搜索,以保护储存产品的替代方法。最近,纳米颗粒被认为是合成化学产品的有希望的替代品。在这项研究中,使用cystoseira baccata藻类提取物合成ZnO纳米颗粒(NP),并使用X射线衍射(XRD),傅立叶变换红外(FTIR)和场发射扫描电子显微镜(FE-SEM)进行表征。使用两种不同方法合成了三种不同类型的ZnO NP,ZnO-A,ZnO-B和ZnO-C。对其杀虫活性进行了评估,并将其与化学合成的ZnO-D NPS相对于cow虫象鼻虫,callosobruchus maculatus(F.)(鞘翅目:Chrysomelidae)在储存的cow虫上进行了比较。生物合成的ZnO-A,ZnO-B和ZnO-C NPs对Maculatus的活性较高。确定粒径最小(24.3 nm)的多孔ZnO-A NP是最毒性的纳米颗粒,导致五天后的Maculatus成人死亡率最高。虽然ZnO-D NP是Maculatus C. C. C. c. c. c. c. nps的有效性最低。明显的产卵抑制(35.1至44.9%)和后代还原(35.7至
上面的量是在所有耦合(或传输计划)的集合上进行的,即,第一个边缘为µ,第二个边缘为ν的X×X上的所有概率度量集。当将单位质量从X到Y传输成本为R 2(X,Y)时,Wasserstein距离量化了将单位质量转运到ν的最小努力。基于最佳运输理论和瓦瑟斯坦空间的良好正确的方法在几个重要领域的纯数学领域取得了巨大成功,包括概率理论[7,8],(随机)分化差异方程式[43,44]除了理论应用外,Wasserstein度量的几何特征(以及其他与运输相关的指标)给出了
在这项工作中,ZnO纳米颗粒(NP)成功合成并涂有油酸(OA)。这些NP(ZnO-OA)的平均直径约为11.5 nm,其核心的特征是XRD和FTIR和Raman的涂层。在不同浓度(0.10、0.25、0.50、0.75和1.00 wt%)的ZnO-OA的均匀分散体中,在嗜热物上是嗜热物,并在逻辑上表征了油。随着NP的浓度,密度和粘度值都增加,对于1 wt%纳米分散,相对增量分别为0.5%和4.0%。使用配备有摩擦学球的三针配置测试模块的Anton Paar MCR 302节省仪,在353.15 K下进行摩擦学测试。关于摩擦学行为,最佳浓度占ZnO-OA的0.25 wt%(摩擦系数减少的25%,横截面面积减少了82%,相对于用纯基碱基获得的磨损)。滚动机制由于纳米辅助作用的球形形状,将滑动摩擦转化为滚动摩擦,并且修补效果可以解释纳米化剂相对于纯PAO40的摩擦学性能更好。此外,在与Pao40 + 0的摩擦学测试中获得的共聚焦拉曼显微镜证明了PAO40,ZnO-OA NP和铁氧化物的存在。25 wt%ZnO-OA分散。 2021作者。 由Elsevier B.V. 发布 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。25 wt%ZnO-OA分散。2021作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
1控制论,纳米技术和数据处理部,自动控制学院,电子和计算机科学,西里西亚技术大学,阿卡迪米卡16,44-100,波兰2。波兰科学院物理学院研究中心马格托普,阿勒贾·洛特尼科夫32/46,02-668波兰华沙4 4 4 4 4 4 4材料科学研究所,麦克斯·伯格曼生物材料中心和德雷斯登纳米分析中心,纳米分析中心威尼斯福斯卡里大学,通过Torino 155,I-30172委内兹Mestre,意大利MONIKA.KWOKA@POLSL.pl,Massimo.sgarzi@unive.it.it和Gianaurio。cuniberti@tu-dresden.de
摘要:设计纳米级异质结构材料是增强气体传感性能的一种众所周知的方法。在本研究中,溶解在乙醇溶剂中的氯化锌和二水合氯化锡的混合溶液被用作初始前体,使用超声喷雾热解 (USP) 法在氧化铝基底上沉积传感层。通过在初始前体中应用不同的比例来生长几种 ZnO/SnO 2 异质结构。这些异质结构被用作传感 H 2 S 气体分子的活性材料。结果表明,USP 前体中氯化锌的增加会改变传感器的 H 2 S 灵敏度。发现最佳工作温度为 450°C。传感器的 USP 前体中含有 5:1(ZnCl 2:SnCl 2·2H 2 O)的比例,比纯 SnO 2(约 95 倍)样品和其他异质结构具有更高的响应。随后,还研究了 ZnO/SnO 2 异质结构对 5 ppm NO 2 、200 ppm 甲醇、100 ppm CH 4 、丙酮和乙醇的选择性。分析了 ZnO/SnO 2 的气敏机理,认为气敏性能的显著提高主要归因于 ZnO 和 SnO 2 之间异质结构的形成。还利用 X 射线衍射、扫描电子显微镜、能量色散 X 射线、透射电子显微镜和 X 射线光电子能谱分析了合成的材料,以研究 ZnO/SnO 2 异质结构的材料分布、晶粒尺寸和材料质量。关键词:气体传感器、ZnO/SnO 2 、异质结构、超声喷雾热解、H 2 S ■ 介绍
如今,为了满足人类的能源需求,对一次能源和二次能源的需求一直在增加。近年来,太阳能电池已被用作生产可再生、可持续和无污染能源的替代品。各种材料已被用作电池中的传输层。TIO2 是这些材料之一,已被广泛用作电子传输层,但目前,ZnO 是另一种重要材料。比 TIO2 的使用更晚。此外,钙钛矿太阳能电池是属于纳米家族的新一代太阳能电池。目前,钙钛矿太阳能电池 (PSC) 是电子工业中一种很有前途的电池,因为它具有高功率转换效率,以及制造硅太阳能电池的相对较低的成本,以及导致钙钛矿在不同类型的基板上使用的灵活性。此外,石墨烯作为光伏能量转换最重要的基本光伏材料已经出现并得到使用。石墨烯在太阳能电池的构造中用作透明电极、层间活性层、电子和空穴传输层或电子和空穴分离层。在本文中,目标是找到太阳能电池中功率转换效率最高的最佳结构,我们将进一步看到,通过使用钙钛矿、ZnO 和石墨烯,我们将以较低的制造成本实现 16% 的功率转换效率。
用晶体学方向(001)和晶格参数a = b = 0.3265 nm和c = 0.5212 nm表征了产生的ZnO 膜。Zno 1 - 薄膜表面上的纳米晶状体的特征大小范围从50 nm到200 nm。ZnO 1的晶格参数 - ssх纳米晶体的实验确定为Zno = 0.7598 nm。这项研究阐明了ZnO膜的晶格参数以及ZnO 1的几何尺寸,在胶片表面上在胶片表面上的纳米晶状体的几何尺寸。已经确定ZnO 1的晶体结构 - sх纳米晶体代表一个立方晶格,属于空间群f43m。已经确定,在γ-辐照5·10 6 rad之后,Zno 膜的电阻率降低至ρ=12,7Ω·CM,多数荷载流子(µ)的迁移率为0.18 cm 2 /v·S,而浓度增加了(N)的浓度(N)和相等的2.64•10 18 cM -10 18 cM -10 18 cM -10 18 cM -10 18 cM。对γ/n-Si异质结构的当前电压特性的研究在γ摄取之前和之后的剂量为5·10 6 rad的研究表明,电压对电压的依赖性遵守了指数定律,这与discection灭deptection deptetion deptetion deptetion deptetion deptetion deptetion depettion depettion depettion deptetion。确定,在γ-辐照的影响下,剂量为5·10 6 rad,p-zno >/n-Si异质结构在负电压下增加,并且由于单位网络级别的稳定性而在稳定性上观察到固定曲线和峰值的曲线,并且峰值在快速层面上的稳定性上是在稳定性上的。关键字:电影;超声喷雾热解;纳米晶体; γ辐射;晶体学取向;晶格参数;携带者;注射耗尽PAC:78.30.am
