T. A. Chowdhury *,R.B。Arif,H。Israq,N。Sharmili,R。S. Shuvo电气与电子工程系,孟加拉国达卡Ahsanullah科学技术大学。太阳能电池电容模拟器(SCAPS-1D)已用于模拟,设计和分析Mose 2,这是一种有吸引力的过渡金属二甲藻元化物(TMDC)材料,基于基于的杂项结构太阳能电池,将其用作用于溶胶电池中常规吸收层的潜在替代方法。这项工作还着重于寻找最佳的吸收剂,缓冲层的厚度以及工作温度对太阳能电池性能的影响,并可能替代有毒的CDS缓冲层。已经获得了Mose 2吸收层的最佳厚度为1 µm,缓冲层约为0.04 µm。用基于CD的缓冲层太阳能电池获得的效率为20.21%。在不同的缓冲层中,例如在2 s 3,ZnO,Znos和Znse中,基于Mose 2的太阳能电池获得的最高效率为20.58%,ZnO缓冲层层为20.58%。基于ZnO缓冲液的太阳能电池的温度梯度为-0.355%/K,而基于CDS缓冲液的太阳能电池为-0.347%/k。这项工作的发现提供了重要的指导,以制造具有无毒ZnO作为潜在缓冲层的高效Mose 2薄膜太阳能电池。2023年11月29日收到;公认的2024年2月15日)关键字:Mose 2,Scaps-1d,太阳能电池,缓冲层,温度,效率
细菌感染可能发生在各种身体组织中,包括呼吸道,尿路,胃肠道和血流。这项研究旨在使用表型和基因型方法鉴定三种重要的致病物种 - 大肠杆菌,克雷伯氏菌和铜绿假单胞菌。细菌分离株最初通过标准诊断测试鉴定,并通过多重PCR确认。将与每种病原体相对应的三个随机选择的分离株进行基因测序,并与NCBI的参考菌株进行比较。此外,从乳杆菌属的氧化锌(ZnO)纳米颗粒的抗生物胶片活性。提取物。使用FTIR,XRD,FE-SEM和AFM对合成的ZnO纳米颗粒进行表征。XRD分析显示出不同的峰值指示晶相,而AFM和FE-SEM显示球形纳米颗粒,平均直径为58.30 nm。该研究还评估了ZnO纳米颗粒抑制生物膜形成的能力。结果表明,样本类型(烧伤,伤口和尿液)与感染病原体之间没有统计学意义的关联(P = 0.37)。多重PCR扩增在28个分离株中成功成功,共同感染如下:57.15%的分离株显示三重感染(所有三种病原体),而在57.14%(E. coli and P. aeruginosa)中观察到双重感染,e.luginosa和46.42%(E. coli and K. pneos and aerug anderos and Aerimonia和46.42%)和46.46%(和46.42%)和46%。分离株的肺炎。用ZnO纳米颗粒处理后观察到生物膜形成的显着降低(P≤0.001)。在50.01%(大肠杆菌),28.58%(铜绿假单胞菌)和17.86%(K。肺炎)中检测到单一感染。测序分析显示,大肠杆菌,铜绿假单胞菌和K.肺炎的参考基因的相似性分别为99%和98%。总而言之,基因型和表型方法对病原体鉴定有效,ZnO纳米颗粒在抑制生物膜形成方面具有显着潜力,为对抗细菌感染提供了有希望的方法。
b非洲可持续农业研究所(ASARI)Mohammad VI理工大学(UM6P),Laayoune,摩洛哥C C C型化学系,沙特国王大学,里亚德大学11451年,沙特阿拉伯,阿拉伯人11451 Sheffield,S1 3JD,英国,在这项工作中,纯和MG-CU共掺杂的氧化锌薄膜都是由Sol-Gel Spin涂层技术制备的。微观玻璃基板用于合成薄膜。通过X射线光谱(XRD),光致发光光谱(PL),扫描电子显微镜(SEM),紫外线可见光谱(UV-VIS)和能量分散X射线分析(EDX)检查薄膜。XRD揭示了膜的六边形Wurtzite阶段。对于纯和MG-CU共掺杂的ZnO,观察到的晶粒尺寸分别为23.34 nm至15.94 nm。SEM图像显示了晶粒尺寸的增加,并通过MG-CU共掺杂表面平滑。通过EDX分析证实了ZnO纳米膜中Mg和Cu的存在。紫外线分析显示,掺杂的透射百分比增加。TAUC关系用于估计样品的带隙,并观察到带隙的显着转移。光致发光图显示出更大的发射和掺杂的表面缺陷。可见的光谱完全被低水平的发射覆盖。(2024年7月1日收到; 2024年10月8日接受)关键字:掺杂;传播;纳米颗粒;光致发光1。[3,4]。引言Nano材料有可能通过提高能源转换,存储和传输的效率来彻底改变能源领域。纳米材料可以设计为具有独特且通常是出乎意料的特性,这些特性在散装材料中没有看到,这使得它们对能源应用特别有希望。在当今时代,纳米赛车在舒适人类的能源生产和分配方面做出了巨大的改进。现代技术进步,最终要求更有效的物理和化学技术来开发和生产高级系统,以及不同形式的能源的转换。尽管有一个事实,即尚未耗尽全球化石资产,但是我们目前使用的不同形式的能源的不适当模式的破坏性健康,社会和生态效应是显而易见的[1,2]。能源生产的最大规模替代品以维持和改善由于人口增长和全球化的生命标准,并改善了我们的生活标准素。似乎很可能会增加温室气体的排放,并在未来50年中导致未来的全球变暖。能源与气候变化之间的联系强调了迫切需要过渡到更可持续和弹性的能源系统,该系统可以支持经济发展并改善人民和地球的福祉。这需要政府,企业和个人的共同努力,以优先考虑和投资清洁能源技术和实践,并减少经济各个部门的温室气体排放。
本文介绍了在 LiNbO 3 和 LiNbO 3 :Fe 衬底上采用水热法在低温下生长的 ZnO 纳米棒组成的半导体铁电结构的特性。通过扫描电子显微镜、光致发光和分光光度法分析了所得结构。给出了 SEM 图像和光谱、吸收光谱、紫外和可见光范围内的光致发光光谱。研究表明,可以与其他方法一起使用水热法合成 Zn(NO 3 ) 2 6H 2 O 和 C 6 H 12 N 4 来获得 ZnO 纳米棒阵列,作为基于表面活性剂的紫外线辐射传感器的敏感元件。关键词:纳米棒;光致发光;扫描电子显微镜;吸收光谱 PACS:68.37.Hk,78.55.Ap,42.25.Bs,61.46.Km
Arshad,J.,F.M。A. Alzahrani,S。Munir,U。Younis,M。Al-Buriahi,Z。Alrowaili和M. F. Warsi(2023)。 “将2D石墨烯氧化物片与MGFE2O4/ZnO异质结的整合,以改善有机染料和苯甲酸的光催化降解。” 陶瓷国际49(11):18988-19002。Arshad,J.,F.M。A. Alzahrani,S。Munir,U。Younis,M。Al-Buriahi,Z。Alrowaili和M. F. Warsi(2023)。“将2D石墨烯氧化物片与MGFE2O4/ZnO异质结的整合,以改善有机染料和苯甲酸的光催化降解。”陶瓷国际49(11):18988-19002。