由于近几十年来技术的不断创新,越来越多的人类任务被自动化系统和机器人接管。这也适用于直到最近似乎不可能完全自动化执行的任务,例如驾驶汽车或驾驶轮船(van den Broek,2017)。根据 Sarter、Woods 和 Billings (1994) 的说法,自动化技术最初是为了提高工作流程的精度、性能和效率而开发的。同时,还可以减少工作量并调整操作员的培训要求。人们还认为,从技术上讲,开发几乎不需要或根本不需要人工参与的自主系统也是可能的,从而减少或消除人为错误的可能性。然而,高度自动化的系统甚至完全自主的系统应该被视为人机联合系统。由于“自主”指的是自我指导和自力更生,因此即使自动化水平很高,当环境复杂度增加或自动化发生故障时,它们也可能会失效(Van den Broek,Schraagen,Te Brake, & Van Diggelen,2017 年)。讽刺的是,这种协作的人机交互提出了一个基本的自动化问题,即:
1摘要原因《欧盟关键原材料法》必须保证欧盟内部必需原材料的安全和可持续的交付。这些关键材料之一是锂,这是电池生产的关键原材料,主要由欧盟成员国从智利和澳大利亚进口。为了减少对进口的地缘政治依赖并满足日益增长的需求,欧盟正在调查其边界内锂的替代来源。潜在的锂的来源是从500米的深度上的水层(储层)中泵入地热1的水。欧洲的许多地热供暖含有大量锂,从水中提取锂的技术正在全球迅速发展。从地热水中提取锂也可以改善地热热项目的业务案例。在这种情况下,在2022年提出了一个议会问题,以评估荷兰地热水赢得锂的可行性2。本报告描述了各种技术,并评估了荷兰应用某些地热来源的当前技术和经济可行性。在由EBN,Ennatural,Shell和经济事务和气候部组成的项目团队的支持下进行了这项任务。
参考文献 1. Bayer-Garner IB、Nickell JA、Korourian S。常规 syndecan-1 免疫组织化学检测有助于诊断慢性子宫内膜炎。Arch Pathol Lab Med 2004;128:1000-3。 2. Zou Y、Li S、Ming L 等。慢性子宫内膜炎与输卵管因素不孕的关系。J Clin Med 2022;12(1):285。 3. Barrios De Tomasi J、Opata MM、Mowa CN。宫颈免疫:免疫上皮细胞与宫颈上皮细胞之间的间期。J Immunol Res 2019;2019:7693183。 4. Cicinelli E、De Ziegler D、Nicoletti R 等。阴道和宫颈管培养对评估慢性子宫内膜炎女性子宫内膜腔微生物学的可靠性较差。Gynecol Obstet Invest 2009;68(2):108-15。5. Moreno I、Cicinelli E、Garcia-Grau I 等。不孕无症状女性慢性子宫内膜炎的诊断:组织学、微生物培养、宫腔镜检查和分子微生物学的比较研究。Am J Obstet Gynecol 2018;218(6):602.e1-602.e16。6. Puente E、Alonso L、Laganà AS 等。慢性子宫内膜炎:老问题、新见解和未来挑战。Int J Fertil Steril 2020;13(4):250-6。 7. Park HJ, Kim YS, Yoon TK 等。慢性子宫内膜炎和不孕症。Clin Exp Reprod Med 2016;43(4):185-92。8. Wu D, Kimura F, Zheng L 等。慢性子宫内膜炎改变人类子宫内膜基质细胞的蜕膜化。Reprod Biol Endocrinol 2017;15:16。9. Hennessy M, Dennehy R, Meaney S 等。高收入国家复发性流产的临床实践指南:系统评价。Reprod Biomed Online 2021;42:1146-71。
A reference induced pluripotent stem cell line for large-scale collaborative studies Authors and affiliations: Caroline B. Pantazis 1* , Andrian Yang 2-5* , Erika Lara 1* , Justin A. McDonough 6* , Cornelis Blauwendraat 1,7* , Lirong Peng 1,8,9* , Hideyuki Oguro 6,10 , Jitendra Kanaujiya 6,10 , Jizhong Zou 11 , David Sebesta 12 , Gretchen Pratt 12 , Erin Cross 12 , Jeffrey Blockwick 12 , Philip Buxton 12 , Lauren Kinner-Bibeau 12 , Constance Medura 12 , Christopher Tompkins 12 , Stephen Hughes 12 , Marianita Santiana 1 , Faraz Faghri 1,7,8 , Mike A. Nalls 1,7,8,Daniel Vitale 1,7,8,Shannon Ballard 1,7,8,Yue A. Kirwan 4,5,Venkat Pisupati 5,14,Steven L. Coon 15,Sonja W. Scholz 16,17,Theresa Priebe 18,MiriamÖttl18,Jian Dong 18,Marieke Meijer 18,Lara J.M.Janssen 18,Vanessa S. Lourenco 18,Rik van der Kant 18,19,Dennis Crusius 20,Dominik Paquet 20,21,Ana-Caroline Raulin 22,Guojun Bu 22,Aaron Held 23,Brian J.Wainger 23,Brian J.Wainger 24,Rebecca M.C.Gabriele 25,Jackie M Casey 25,Selina Wray 25,爸爸Abu-Bonsrah 26,42,Clare L. Parish 26,Melinda S. Beccari 27,Don W. Cleveland 27,Emmy Li 27,Indigo V.L.罗斯28,马丁运动28,劳林·海因里希30岁, Richa Basundra 32,Sarah Cohen 32,Richa Khanna 33: 35,Bruce R. Concinal 34,Katherine Johnson 22,莉莉·萨拉法(Lily Sarrafha)39,蒂姆自动相应的汽车
自旋电子学领域的进步为技术提供了巨大的资源,使其在经典信息处理(如数据存储)的多个方面得到发展。现在,研究自旋电子学中尚未被广泛探索的量子信息途径至关重要。腔光磁学是一个新兴领域,它描述了磁振子与腔内电磁驻波的相互作用 [1,2]。磁振子与微波 (MW) 光子强烈相互作用,从而使得经典和量子信息处理和存储应用成为可能,这些应用具有相干操控的磁振子以及通信(光纤)和处理(超导量子比特)单元之间的上/下量子转换器 [3,4]。在本次演讲中,我们将从理论上探索经典和量子范围内微波腔中铁磁体的非线性,并评估量子信息的资源,即涨落压缩和二分纠缠 [5]。当包含所有其他磁振子模式时,我们使用非谐振子(Duffing)模型的(半)经典和量子分析对 Kittel 模式的稳态相空间进行分类。随后,我们计算了可蒸馏纠缠的非零界限,以及稳定态下混合磁振子模式二分配置的形成纠缠。在现实条件下,使用钇铁石榴石样品,可以在两个不同的光通道中通过实验获得预测的磁振子纠缠。[1] X. Zhang、C.-L. Zou、L. Jiang 和 HX Tang,Phys. Rev. Lett. 113, 156401 (2014)。[2] Y. Tabuchi、S. Ishino、T. Ishikawa、R. Yamazaki、K. Usami 和 Y. Nakamura,Phys. Rev. Lett. 113, 083603 (2014)。 [3] A. Osada、R. Hisatomi、A. Noguchi、Y. Tabuchi、R. Yamazaki、K. Usami、M. Sadgrove、R. Yalla、M. Nomura 和 Y. Nakamura,物理学家。莱特牧师。 116, 223601 (2016)。 [4] Y. Tabuchi、S. Ishino、A. Noguchi、T. Ishikawa、R. Yamazaki、K. Usami 和 Y. Nakamura,科学 349, 405 (2015)。 [5] M. Elyasi,YM Blanter,GEW Bauer,物理学家。修订版 B 101 (5), 054402 (2020)。
références1。Mizushima N,Levine B,Cuervo AM,Klionsky DJ。自噬通过细胞自我消化与疾病作斗争。自然。2008年2月28日; 451(7182):1069–75。 2。 Mizushima N,Komatsu M.自噬:细胞和组织的翻新。 单元格。 2011年11月11日; 147(4):728–41。 3。 Pierrefite-Carle V,Santucci-Darmanin S,Breuil V,Camuzard O,Carle GF。 骨骼中的自噬:保持平衡。 老化Res Rev. 2015年11月; 24(pt b):206-17。 4。 Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。2008年2月28日; 451(7182):1069–75。2。Mizushima N,Komatsu M.自噬:细胞和组织的翻新。单元格。2011年11月11日; 147(4):728–41。3。Pierrefite-Carle V,Santucci-Darmanin S,Breuil V,Camuzard O,Carle GF。骨骼中的自噬:保持平衡。老化Res Rev.2015年11月; 24(pt b):206-17。 4。 Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。2015年11月; 24(pt b):206-17。4。Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Liu F,Fang F,Yuan H等。通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。J骨矿工销售J Am Soc Bone Miner Res。2013年11月; 28(11):2414–30。5。Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Nollet M,Santucci-Darmanin S,Breuil V等。成骨细胞中的自噬参与矿化和骨稳态。自噬。2014年12月18日; 10(11):1965–77。6。Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Zhao Y,Chen G,Zhang W等。自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。J细胞生理。2012年2月; 227(2):639–48。7。DeSelm CJ,Miller BC,Zou W等。自噬蛋白调节整骨骨吸收的分泌成分。DEV单元格。2011年11月15日; 21(5):966–74。8。Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Sànchez-Riera L,Wilson N,Kamalaraj N等。骨质疏松和脆弱性骨折。最佳实践临床风湿性。9。2010年12月; 24(6):793–810。Almeida M,O'Brien CA。 骨骼老化的基本生物学:应力反应途径的作用。 J Gerontol A Biol Sci Med Sci。 2013年10月; 68(10):1197–208。 10。 Manolagas SC,Parfitt AM。 旧的对骨骼意味着什么。 趋势内分泌代替tem。 2010 Jun; 21(6):369–74。 11。 Gavali S,Gupta MK,Daswani B,Wani MR,Sirdeshmukh R,Khatkhatay Mi。 雌激素通过促进自噬来增强人类成骨细胞的存活和功能。 Biochim Biophys acta mol Cell Res。 2019年9月; 1866(9):1498–507。 12。 Cheng L,Zhu Y,Ke D,XieD。雌激素活化的自噬对雌激素的抗αsteocolasogenation具有负面影响。 细胞增殖[Internet]。 2020年3月11日[引用2020年10月12日]; 53(4)。 可从:https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7162800/ 13。 pan F,Liu X-G,Guo Y-F等。 自助途径的调节可能会影响中国的地位变化:老年人的证据。 j hum Genet。 2010年7月; 55(7):441–7。 14。 Zhang L,Guo Y-F,Liu Y-Z等。 基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。 J骨矿工销售J Am Soc Bone Miner Res。 2010年7月; 25(7):1572–80。 15。 Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Almeida M,O'Brien CA。骨骼老化的基本生物学:应力反应途径的作用。J Gerontol A Biol Sci Med Sci。2013年10月; 68(10):1197–208。10。Manolagas SC,Parfitt AM。旧的对骨骼意味着什么。趋势内分泌代替tem。2010 Jun; 21(6):369–74。11。Gavali S,Gupta MK,Daswani B,Wani MR,Sirdeshmukh R,Khatkhatay Mi。雌激素通过促进自噬来增强人类成骨细胞的存活和功能。Biochim Biophys acta mol Cell Res。2019年9月; 1866(9):1498–507。12。Cheng L,Zhu Y,Ke D,XieD。雌激素活化的自噬对雌激素的抗αsteocolasogenation具有负面影响。细胞增殖[Internet]。2020年3月11日[引用2020年10月12日]; 53(4)。可从:https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7162800/ 13。pan F,Liu X-G,Guo Y-F等。自助途径的调节可能会影响中国的地位变化:老年人的证据。j hum Genet。2010年7月; 55(7):441–7。14。Zhang L,Guo Y-F,Liu Y-Z等。 基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。 J骨矿工销售J Am Soc Bone Miner Res。 2010年7月; 25(7):1572–80。 15。 Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Zhang L,Guo Y-F,Liu Y-Z等。基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。J骨矿工销售J Am Soc Bone Miner Res。2010年7月; 25(7):1572–80。15。Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Chen K,Yang Y-H,Jiang S-D,Jiang L-S。随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。组织化学细胞生物。16。2014年9月; 142(3):285–95。Camuzard O,Santucci-Darmanin S,Breuil V等。成骨细胞谱系中的性别特异性自噬调制:抵消女性骨质流失的关键功能。oncotarget。2016年10月11日; 7(41):66416–28。17。Yang Y,Zheng X,Li B,Jiang S,Jiang L.卵巢切除大鼠中骨细胞自噬的活性增加,及其与氧化应激状态和骨骼丧失的相关性。Biochem Biophys Res Commun。2014年8月15日; 451(1):86–92。18。Luo D,Ren H,Li T,Lian K,LinD。雷帕霉素通过激活骨细胞自噬来降低老年骨质疏松症的严重程度。骨质骨int j stuph Result coop eur发现了美国的骨质骨骨骨质骨。2016年3月; 27(3):1093–101。19。yuan Y,Fang Y,Zhu L等。 造血自噬的恶化与骨质疏松症有关。 老化细胞。 2020; 19(5):E13114。 20。 Kneissel M,Luong-Nguyen N-H,Baptist M等。 依维莫司通过破骨细胞抑制取消骨质流失,骨吸收和组织蛋白酶K的表达。 骨头。 2004年11月; 35(5):1144–56。 21。 Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。yuan Y,Fang Y,Zhu L等。造血自噬的恶化与骨质疏松症有关。老化细胞。2020; 19(5):E13114。20。Kneissel M,Luong-Nguyen N-H,Baptist M等。依维莫司通过破骨细胞抑制取消骨质流失,骨吸收和组织蛋白酶K的表达。骨头。2004年11月; 35(5):1144–56。 21。 Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。2004年11月; 35(5):1144–56。21。Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。内分泌学。2006年12月; 147(12):5592–9。22。Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。Kim H-J,Zhao H,Kitaura H等。糖皮质激素通过破骨细胞抑制骨形成。J Clin Invest。2006年8月; 116(8):2152–60。 23。 24。2006年8月; 116(8):2152–60。23。24。Lin N-Y,Chen C-W,Kagwiria R等。 自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。 Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。Lin N-Y,Chen C-W,Kagwiria R等。自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。 Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。Ann Rheum Dis。2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。2016; 75(6):1203–10。fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。Calcif Tissue int。2020 Jul; 107(1):60–71。
A multi-agent-driven robotic AI chemist enabling autonomous chemical research on demand Tao Song 1,2,† , Man Luo 1,† , Linjiang Chen 1,3,†, *, Yan Huang 1 , Qing Zhu 1,4 , Daobin Liu 1 , Baicheng Zhang 1 , Gang Zou 1 , Fei Zhang 2, *, Weiwei Shang 2, *, Jun江1,5 *,&yi luo 1,5 * 1精确和智能化学的关键实验室,Hefei国家健康科学研究中心,在中国科学与技术学院,中国科学与技术学院,化学与材料科学学院2河南科学院创新,中国郑州5赫菲国家实验室,中国科学技术大学,中国赫菲,中国†这些作者也同样做出了贡献:T.S.,M.L.,L.C。电子邮件:linjiangchen@ustc.edu.cn(l.c.); zfei@ustc.edu.cn(F.Z.); wwshang@ustc.edu.cn(W.S.); jiangj1@ustc.edu.cn(J.J。); yiluo@ustc.edu.cn(y.l。)摘要将大语言模型(LLM)成功整合到实验室工作流程中,已经证明了自然语言处理,自主任务执行和协作解决问题的强大功能。1-4这提供了一个令人兴奋的机会,可以实现自动化学研究的梦想。在这里,我们报告了一名机器人AI化学家,该化学家由层次多代理系统提供动力,基于板载Llama-3-70B LLM,能够执行以最少的人类干预来执行复杂的多步实验。它通过与人类研究人员进行交互的任务经理代理人运作,并协调四个特定角色的代理 - 文献阅读器,实验设计师,计算表演者和机器人操作员 - 利用了四个基础资源之一:全面的文献数据库之一:广泛的协议图书馆,广泛的协议图书馆,一个多功能模型库,是一个国家的自动化实验室。我们通过六个不同复杂性的实验任务来证明其多功能性和功效,从直接的合成和表征到更复杂的探索和实验参数的筛选,最终导致功能材料的发现和优化。我们的多代理机器人AI化学家展示了按需自动化学研究的潜力,以提高前所未有的效率,加速发现,并使跨学术学科和工业的先进实验能力访问。
自 1984 年 Bennett 和 Brassard[1]提出量子密钥分发 (QKD) 协议以来,量子密码学引起了广泛的关注。它的安全性由海森堡不确定性原理、量子不可克隆定理等量子力学原理保证。量子密码学可以提供无条件安全的优势,使得量子密码学的研究越来越重要。目前,量子密码学的许多重要分支已被发展起来,如量子密钥分发[2,3]、量子签名 (QS)[4–6]、量子隐形传态 (QT) [7]、量子认证 [8]、确定性安全量子通信 [9]。量子签名可用于验证发送者的身份和信息的完整性。仲裁量子签名 (AQS) 因具有许多优点而备受关注。2002 年,曾文胜等 [9] 在量子密码学中提出了一种基于仲裁的量子签名方案。 [ 10 ] 利用格林-霍恩-泽林格 (GHZ) 态和量子一次性密码本 (QOTP) 提出了第一个仲裁量子签名方案。该方案在经典仲裁数字签名的设计基础上,利用可信第三方仲裁员提供的在线签名为签名者和接收者提供重新验证服务。2008 年,Curty 和 Lutkenhaus [ 11 ] 研究了该方案 [ 10 ],他们认为该方案描述不清楚,安全性分析不正确。针对 Curty 等人的争议,曾等人 [ 12 ] 更详细地证明了该方案 [ 10 ]。2009 年,为了降低协议的复杂度和提高效率 [ 10 ],李等人 [ 12 ] 提出了一种仲裁量子签名方案 [ 10 ]。 [ 13 ] 提出了一种基于Bell态而非GHZ态的AQS方案,并证明了其在传输效率和低复杂度方面的优势。遗憾的是,2010年,Zou和Qiu [ 14 ] 认为李的AQS方案可以被接收方否认,并提出了利用公告板等不使用纠缠态的安全方案的AQS协议。他们的方案进一步简化了李等人的协议,并利用单粒子设计了可以抵抗接收方否认的改进AQS方案,从而降低了AQS的物理实现难度。然而,2011年,Gao等人[ 15 ] 首次从伪造和否认方面对先前的AQS方案进行了全面的密码分析。
(1)Zuo,G。; Linares,M。; Upreti,t。; Kemerink,M。有机半导体中水诱导的陷阱能量的一般规则。自然材料2019,18,588593。https://doi.org/10.1038/s41563-019-019-0347-y。(2)Scheunemann,d。; Vijayakumar,V。; Zeng,H。; Durand,P。; Leclerc,n。; Brinkmann,M。; Kemerink,M。摩擦和绘画:改善有机半导体热电功率因子的通用方法?高级电子材料2020,6(8),2000218。https://doi.org/10.1002/aelm.202000218。(3)Xu,K。;太阳,h。 Ruoko,T.-P。; Wang,G。; Kroon,R。; Kolhe,N。B。; puttisong,y。刘x。 Fazzi,D。; Shibata,K。;杨,C.-y。;太阳,n。 Persson,G。; Yankovich,A。b。; Olsson,E。; Yoshida,H。; Chen,W。M。; Fahlman,M。; Kemerink,M。; Jenekhe,S.A。; Müller,c。 Berggren,M。; Fabiano,S。全聚合物捐赠者受体异质膜中的地面电子转移。nat。mater。2020,19,738744。https://doi.org/10.1038/s41563-020-020-0618-7。(4)Kompatscher,A。; Kemerink,M。关于有效温度seebeck棘轮的概念。应用。物理。Lett。 2021,119(2),023303。https://doi.org/10.1063/5.0052116。 (5)Derewjanko,d。; Scheunemann,d。; Järsvall,E。; Hofmann,A。I。; Müller,c。 Kemerink,M。定位在高掺杂浓度下提高了电导率。 高级功能材料N/A(N/A),2112262。https://doi.org/10.1002/adfm.202112262。 (6)Upreti,t。;威尔肯(Wilken)张,h。 Kemerink,M。光生荷载体的缓慢松弛会增强有机太阳能电池的开路电压。 J. Phys。 化学。Lett。2021,119(2),023303。https://doi.org/10.1063/5.0052116。(5)Derewjanko,d。; Scheunemann,d。; Järsvall,E。; Hofmann,A。I。; Müller,c。 Kemerink,M。定位在高掺杂浓度下提高了电导率。高级功能材料N/A(N/A),2112262。https://doi.org/10.1002/adfm.202112262。(6)Upreti,t。;威尔肯(Wilken)张,h。 Kemerink,M。光生荷载体的缓慢松弛会增强有机太阳能电池的开路电压。J. Phys。 化学。J. Phys。化学。Lett。 2021,12(40),98749881。https://doi.org/10.1021/acs.jpclett.1c02235。 (7)Urbanaviciute,i。; Garcia-Iglesias,M。; Gorbunov,A。; Meijer,E。W。; Kemerink,M。基于硫酰胺的超分子有机盘中的铁晶和铁晶和负压电性。 物理。 化学。 化学。 物理。 2023,25(25),1693016937。https://doi.org/10.1039/d3cp00982c。 (8)Wang,Y。; Yu,J。;张,r。 Yuan,J。; Hultmark,S。;约翰逊,C。E。; N. Pallop; Siegmund,b。 Qian,d。;张,h。 Zou,Y。; Kemerink,M。; Bakulin,A。 a。; Müller,c。 Vandewal,K。; Chen,X.-K。; Gao,F。三元有机太阳能电池中开路电压的起源和设计规则,以最大程度地减少电压损耗。 NAT Energy 2023,8,111。https://doi.org/10.1038/S41560-023-01309-5。 (9)Scheunemann,d。;戈勒,c。托尔曼(C。) Vandewal,K。; Kemerink,M。对有机太阳能电池性能的平衡或非平衡意义。 高级电子材料2023,9(10),2300293。https://doi.org/10.1002/aelm.202300293。 (10)Dash,a。; Guchait,S。; Scheunemann,d。; Vijayakumar,V。; Leclerc,n。; Brinkmann,M。;Lett。2021,12(40),98749881。https://doi.org/10.1021/acs.jpclett.1c02235。(7)Urbanaviciute,i。; Garcia-Iglesias,M。; Gorbunov,A。; Meijer,E。W。; Kemerink,M。基于硫酰胺的超分子有机盘中的铁晶和铁晶和负压电性。物理。化学。化学。物理。2023,25(25),1693016937。https://doi.org/10.1039/d3cp00982c。(8)Wang,Y。; Yu,J。;张,r。 Yuan,J。; Hultmark,S。;约翰逊,C。E。; N. Pallop; Siegmund,b。 Qian,d。;张,h。 Zou,Y。; Kemerink,M。; Bakulin,A。a。; Müller,c。 Vandewal,K。; Chen,X.-K。; Gao,F。三元有机太阳能电池中开路电压的起源和设计规则,以最大程度地减少电压损耗。NAT Energy 2023,8,111。https://doi.org/10.1038/S41560-023-01309-5。 (9)Scheunemann,d。;戈勒,c。托尔曼(C。) Vandewal,K。; Kemerink,M。对有机太阳能电池性能的平衡或非平衡意义。 高级电子材料2023,9(10),2300293。https://doi.org/10.1002/aelm.202300293。 (10)Dash,a。; Guchait,S。; Scheunemann,d。; Vijayakumar,V。; Leclerc,n。; Brinkmann,M。;NAT Energy 2023,8,111。https://doi.org/10.1038/S41560-023-01309-5。(9)Scheunemann,d。;戈勒,c。托尔曼(C。) Vandewal,K。; Kemerink,M。对有机太阳能电池性能的平衡或非平衡意义。高级电子材料2023,9(10),2300293。https://doi.org/10.1002/aelm.202300293。(10)Dash,a。; Guchait,S。; Scheunemann,d。; Vijayakumar,V。; Leclerc,n。; Brinkmann,M。;
药物发现过程始于确定靶点和明确药物作用机制,以期赢得疾病治疗之战(Vamathevan 等人,2019 年)。药物发现中靶点识别的方法包括虚拟筛选和实验筛选。作为最广泛使用的基于结构的虚拟筛选方法之一,分子对接可以识别查询配体的最可能靶点。有许多流行的对接程序,例如 AutoDock、LeDock、Glide、GOLD 和 DOCK(Lapillo 等人,2019 年;Shahid 等人,2021 年)。为了减少评分偏差,Lee 和 Kim(2020 年)通过对 GOLD、AutoDock Vina 和 LeDock 的评分算法进行排名,构建了一个用于靶点预测的 Web 服务器。为了协助识别草药成分的假定靶点,Zhang 等人利用分子对接程序对草药成分进行分类,以确定可能的靶点。 (2019 ) 使用反向对接方法来预测配体-靶标相互作用。Ma 和 Zou (2021 ) 使用 DOCK 算法开发了一种反向对接程序,以支持将配体与多个蛋白质结构集合对接。然而,对接的优势被严重的缺陷所抵消:对接会产生许多假阳性事件 ( Lyu et al., 2019 )。这是由相对粗糙的搜索算法造成的,例如,蒙特卡洛算法在活性位点生成一个随机的配体初始构型,包括随机构象、平移和旋转;禁忌搜索算法对配体的当前构型进行了一些小的随机更改并对其进行排序 ( Sulimov et al., 2019 )。为了避免假阳性事件,我们之前开发了一种基于贝叶斯-高斯混合模型 (BGMM) 的靶标过滤算法 (Wei et al., 2022)。我们对从 PDB 中的配体结合蛋白晶体结构中提取的配体原子与蛋白质片段之间的相互作用对进行了聚类(发布时间:1995 年 1 月至 2021 年 4 月),发现潜在靶标应满足 ≥ 600 个显著相互作用对,同时它们与所有相互作用对的比例≥ 0.8 (Wei et al., 2022)。我们方法的优势在于,我们不仅考虑了配体和蛋白质之间的主要键,例如氢键、盐桥、疏水接触、卤素键和 π 堆积 (Shaikh et al., 2021),还总结了配体和蛋白质之间的所有原子接触