1。简介大气的低频可变性长期以来一直是动态气象社区中强烈投资的主题(Benzi等人。1986; Ghil 1987; Mo and Ghil 1987; Benzi and Speranza 1989; Tibaldi and Molteni 1990; Pelly and Hoskins 2003b,a)。 最近几十年来,人们对通过罗斯比波(Rossby Wave)介导的上层中部循环中的复杂相互作用以及表面极端事件(例如热浪)的兴趣越来越多,并具有歧管影响。 从半球到本地的多个尺度研究了这个主题,从过去的气候到未来的培训,以及许多应用,从数值天气预测(NWP)系统的可预测性到极端与天气相关的影响和风险评估。 热浪是高温的长时间发作,其持续时间从几天到几周,都需要不同的形成,发育和维护机械性。 在北半球,它们通常与高振幅上流层脊或阻塞反气旋有关。 这些通常嵌入到持久的大规模波模式中(White等人 2022),并且可以同时影响“同时热浪”,从而影响整个中间位置的几个区域(Kornhuber等人。 2020)。 这些是空间上复合极端事件的例子,这可以通过多个位置同时发生的危害导致极端的社会经济影响(CFR。 Zscheischler等。 2020)。 见图 尽管这种并发热浪的频率越来越高(Rogers等人1986; Ghil 1987; Mo and Ghil 1987; Benzi and Speranza 1989; Tibaldi and Molteni 1990; Pelly and Hoskins 2003b,a)。最近几十年来,人们对通过罗斯比波(Rossby Wave)介导的上层中部循环中的复杂相互作用以及表面极端事件(例如热浪)的兴趣越来越多,并具有歧管影响。从半球到本地的多个尺度研究了这个主题,从过去的气候到未来的培训,以及许多应用,从数值天气预测(NWP)系统的可预测性到极端与天气相关的影响和风险评估。热浪是高温的长时间发作,其持续时间从几天到几周,都需要不同的形成,发育和维护机械性。在北半球,它们通常与高振幅上流层脊或阻塞反气旋有关。这些通常嵌入到持久的大规模波模式中(White等人2022),并且可以同时影响“同时热浪”,从而影响整个中间位置的几个区域(Kornhuber等人。2020)。这些是空间上复合极端事件的例子,这可以通过多个位置同时发生的危害导致极端的社会经济影响(CFR。Zscheischler等。2020)。见图尽管这种并发热浪的频率越来越高(Rogers等人1,以2023年7月的并发热波的rossby波电势涡度和温度异常之间的关联。2022; Messori等。
1。简介大气的低频可变性长期以来一直是动态气象社区中强烈投资的主题(Benzi等人。1986; Ghil 1987; Mo and Ghil 1987; Benzi and Speranza 1989; Tibaldi and Molteni 1990; Pelly and Hoskins 2003b,a)。 最近几十年来,人们对通过罗斯比波(Rossby Wave)介导的上层中部循环中的复杂相互作用以及表面极端事件(例如热浪)的兴趣越来越多,并具有歧管影响。 从半球到本地的多个尺度研究了这个主题,从过去的气候到未来的培训,以及许多应用,从数值天气预测(NWP)系统的可预测性到极端与天气相关的影响和风险评估。 热浪是高温的长时间发作,其持续时间从几天到几周,都需要不同的形成,发育和维护机械性。 在北半球,它们通常与高振幅上流层脊或阻塞反气旋有关。 这些通常嵌入到持久的大规模波模式中(White等人 2022),并且可以同时影响“同时热浪”,从而影响整个中间位置的几个区域(Kornhuber等人。 2020)。 这些是空间上复合极端事件的例子,这可以通过多个位置同时发生的危害导致极端的社会经济影响(CFR。 Zscheischler等。 2020)。 见图 尽管这种并发热浪的频率越来越高(Rogers等人1986; Ghil 1987; Mo and Ghil 1987; Benzi and Speranza 1989; Tibaldi and Molteni 1990; Pelly and Hoskins 2003b,a)。最近几十年来,人们对通过罗斯比波(Rossby Wave)介导的上层中部循环中的复杂相互作用以及表面极端事件(例如热浪)的兴趣越来越多,并具有歧管影响。从半球到本地的多个尺度研究了这个主题,从过去的气候到未来的培训,以及许多应用,从数值天气预测(NWP)系统的可预测性到极端与天气相关的影响和风险评估。热浪是高温的长时间发作,其持续时间从几天到几周,都需要不同的形成,发育和维护机械性。在北半球,它们通常与高振幅上流层脊或阻塞反气旋有关。这些通常嵌入到持久的大规模波模式中(White等人2022),并且可以同时影响“同时热浪”,从而影响整个中间位置的几个区域(Kornhuber等人。2020)。这些是空间上复合极端事件的例子,这可以通过多个位置同时发生的危害导致极端的社会经济影响(CFR。Zscheischler等。2020)。见图尽管这种并发热浪的频率越来越高(Rogers等人1,以2023年7月的并发热波的rossby波电势涡度和温度异常之间的关联。2022; Messori等。
气候变化正对人类和生态系统构成风险,这些风险随着全球变暖的增加而加速(IPCC,2022a)。极端事件,例如2018年北半球的春季/夏季/夏季炎热的春季/夏季,无与伦比的北美西部热浪以及2021年的西欧洪水泛滥,其影响表明了未来的一些挑战(Apel等,2022; Vogel等人,Vogel等人,2019年)。人们对气候影响的复杂性以及气候危害和风险的化合物和级联性质的认识越来越多(Raymond,Horton等,2020; Simpson等,2021; Zscheischler,Martius,Martius,Westra,Bevacqua,&Raymond,2020)。在2022年夏天,复合极端的热量,干旱和火灾影响了欧洲,而早期发作在印度和巴基斯坦有毁灭性的序列。热量和干燥的极端情况之后是暴风雨和强烈的风暴,这导致了与热有关的人类死亡(Zachariah等,2022)。2022年破纪录的季风降雨导致巴基斯坦的滑坡和洪水,导致数千人丧生,受影响更多,以及对当地社区和基础设施的不可估计的损害(Zachariah等人,20222年)。这些极端气候中的许多都在2023年重复,在陆地上和海洋,野火,洪水和干旱上有热浪(Zachariah等,2023)。越来越多的事件归因于人为气候变化(Philip等,2020)。适应建模已告知决策,突出了最迫切需要行动的地方(Kondrup等,2022)。在这些突然的事件之外,由于陆地和海洋中的热量增加而引起的慢速发作变化(Lenoir等,2020; Smale等,2019)改变了我们的自然生态系统,并造成了局部灭绝以及重要的主食损失(Mbow等人,2019年)。冰川一直以一种在2000年影响径流和海平面上前所未有的速度撤退,海平面在1901年至2018年之间增长了约0.20 m(Fox-Kemper等人,2021年)。在过去的十年中,人们对气候变化和气候风险的了解迅速发展,案例研究越来越多,更长的时间序列分析,复杂的建模,实验和机械理解评估在替代情景下评估当前和预测的影响(Martínez-Solanas等人(Martínez-Solanas等)(Martínez-Solanas et al。 )。针对这些增加的威胁(Berrang-Ford等,2021)的响应措施已实施,并得到了增加的风险知识和影响力意识的支持(Archibald&Butt,2018)。这些进步允许从适应策略和计划转变为实施,在某些情况下,转变为监视适应性(Leiter,2021)。然而,气候变化影响的变化频率和幅度,许多事件的相互联系以及它们的级联后果越来越具有挑战性的适应计划和行动(Simpson等,2023),构成了日益增长的适应性差距,即,载重需求和适应性动作之间的差异(Garschagen等人)。关于适应反应的未来有效性的知识和不确定性不足,挑战了我们在温度升高下降低预计风险的能力(Berrang-Ford等,2021)。定期报告和监视适应性可以帮助克服不确定性,并在新知识中考虑到新知识。仍然,并非可以监控所有更改,并非所有需求都被考虑,并且通常不会内置长期监控