本文档中提供的方法是由IDT客户提供的,他们在实验中使用了Alt-R CRISPR-CAS9系统。本文档可以作为在类似模型生物中使用Alt-R CRISPR-CAS9系统的起点,但可能无法针对您的基因或应用进行完全优化。idt不保证方法或任何此类方法的任何性能。IDT应用程序专家只能提供有关本文档中概述的方法的一般技术支持和故障排除支持。
本文件中介绍的方法由一位在实验中使用过 Alt-R CRISPR-Cas9 系统的 IDT 客户提供。本文件可作为在类似模型生物中使用 Alt-R CRISPR-Cas9 系统的起点,但可能并未针对您的基因或应用进行完全优化。IDT 不保证方法或此类方法的任何性能。IDT 应用专家只能提供与本文件中概述的方法相关的一般技术支持和故障排除支持。
摘要 KNOX 和 BELL 转录因子调控植物二倍体发育的不同步骤。在绿藻莱茵衣藻中,KNOX 和 BELL 蛋白由相反交配类型的配子遗传,并在合子中异二聚化以激活二倍体发育。相反,在小立碗藓和拟南芥等陆生植物中,KNOX 和 BELL 蛋白在二倍体发育后期的孢子体和孢子形成、分生组织维持和器官发生中发挥作用。然而,目前尚不清楚 KNOX 和 BELL 的对比功能是否是在藻类和陆生植物中独立获得的。本文表明,在基础陆生植物物种多形地钱中,配子表达的 KNOX 和 BELL 是启动合子发育所必需的,它通过促进核融合来启动,其方式与莱茵衣藻中的方式惊人地相似。我们的结果表明,合子激活是 KNOX/BELL 转录因子的祖先作用,随着陆生植物的进化,其转向分生组织维持。
摘要遗传修饰(GM)猪的产生被认为是在生物医学研究中为各种疾病和猪开发具有抗病毒感染的动物模型动物的有价值的。可以使用几种方法(例如,使用GM细胞作为SCNT供体,直接注射转基因或基因组编辑成分(GEC)在受精的卵中直接注射到Zygotes中,使用Zygots,使用Zygote的体外电rOpration(Ep)在Zygote中,gecots restrone gececs,gecots,可以使用几种方法,例如使用GM细胞作为SCNT供体,直接注射转基因或基因组编辑成分(GEC),使用Zygotes,使用Zygots的体外电型(EP)在Zygote中,gecots,gecots refofter(ep) GEC进入经过SCNT处理的胚胎,并在GEC存在下经过SCNT处理的胚胎的体外EP。 在我们先前的研究中,我们对基于CRISPR/CAS9的GEC进行了细胞质注射到孤态激活的猪可以使用几种方法,例如使用GM细胞作为SCNT供体,直接注射转基因或基因组编辑成分(GEC),使用Zygotes,使用Zygots的体外电型(EP)在Zygote中,gecots,gecots refofter(ep) GEC进入经过SCNT处理的胚胎,并在GEC存在下经过SCNT处理的胚胎的体外EP。在我们先前的研究中,我们对基于CRISPR/CAS9的GEC进行了细胞质注射到孤态激活的猪
课程描述发育神经科学探讨了神经发展的基本原理。该课程将旨在将学生融入发育生物学的旅程,重点是神经系统的发展。课程始于一个基本问题,即单个受精卵(合子)如何继续开发出一种具有多种不同细胞类型的生物体,它们的形式和功能不同,从而产生了多个不同的器官。该课程着眼于卵和精子中已经存在的信号分子,以及这如何使合子成为不对称的起点。然后,我们将研究在细胞分裂,迁移,细胞命运规范,形态发生中起作用的分子,最终形成了我们感兴趣的器官,即大脑。从这里开始,我们将研究大脑发育直到出生,这将使我们进入课程的结尾。
(a) X 和 Z (b) X 和 Y (c) Y 和 Z (d) Z 和 Z 2 下列哪项关于人类受精卵卵裂的陈述是错误的? (a) 当受精卵通过峡部向子宫移动时,卵裂开始。 (b) 随着卵裂分裂的继续,卵裂球变得越来越小。 (c) 第一次卵裂分裂是减数分裂。 (d) 卵裂分裂以快速连续的方式发生。 3 O 型血的人的母亲和父亲分别有 A 和 B 型血。母亲和父亲的基因型是什么? (a) 母亲是 A 血型纯合子,父亲是 B 血型杂合子。 (b) 母亲是 A 血型杂合子,父亲是 B 血型纯合子。 (c)母亲和父亲分别是“A”和“B”血型的杂合子。 (d)母亲和父亲分别是“A”和“B”血型的纯合子。
简单摘要:基因组编辑是一种众所周知的方法,用于将靶向遗传替代物引入牲畜基因组中。这些变化必须在种系中转移,才能有效地在动物繁殖中。传递CRISPR-CAS9成分的常规方法,例如合子中的微注射或编辑体细胞,然后进行体细胞核转移(SCNT),在包括小鼠和某些家畜在内的各种物种中都取得了成功。但是,这些方法通常是劳动密集型的,技术要求的,并且与可变效率相关。电穿孔是一种最近描述的将Cas9和sgrnas交付到Zygotes中的方法,因为它需要比微注射较低的设备便宜,并且需要更少的时间。在本研究中,我们开发了一种称为合子(CRISPR-EP)CRISPR RNP电穿孔的有效方法,以降低镶嵌率并增加水牛的双重突变。开发的基因编辑的简单简单方案可以作为研究水牛胚胎的功能基因组学的有用方法。
摘要:我们研究了通过 CRISPR-Cas9 合子电穿孔在小反刍动物中进行单步基因组编辑的可能性。我们利用双 sgRNA 方法靶向绵羊胚胎中的 SOCS2 和 PDX1 以及山羊胚胎中的 OTX2。比较了在胚胎发育的四个不同时间进行的显微注射和三种不同电穿孔设置的基因编辑效率。在受精后 6 小时对绵羊合子进行电穿孔,使用包括短高压(穿孔)和长低压(转移)脉冲的设置,可以有效产生 SOCS2 敲除囊胚。CRISPR/Cas9 电穿孔后的突变率为 95.6% ± 8%,包括 95.4% ± 9% 的双等位基因突变;相比之下,使用显微注射时分别为 82.3% ± 8% 和 25% ± 10%。我们还成功破坏了绵羊的 PDX1 基因和山羊胚胎的 OTX2 基因。PDX1 的双等位基因突变率为 81 ± 5%,OTX2 的双等位基因突变率为 85% ± 6%。总之,利用单步 CRISPR-Cas9 合子电穿孔,我们成功地在小反刍动物胚胎基因组中引入了双等位基因缺失。