注意:在 2.1.x 之前的版本中,当启用外部身份验证时,如果 AAA 服务器无法访问或 AAA 服务器拒绝未知用户名,Cisco DNA Center 将恢复为本地用户。在当前版本中,如果 AAA 服务器无法访问或 AAA 服务器拒绝未知用户名,Cisco DNA Center 不会恢复到本地用户。启用外部身份验证回退后,外部用户和本地管理员可以登录 Cisco DNA Center。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
神经变性(Ragagnin等,2019; Rojas等,2020; Reyes- Leiva等,2022)。ALS的神经病理机制涉及遗传,环境和细胞因子之间的复杂相互作用,从而导致运动神经元脆弱性和神经蛋白流量(Mejzini等,2019; Le Gall等,2020; Keon等,2021年,2021年)。积累的证据表明,铁失调和沉积在ALS的发病机理中起着至关重要的作用,这有助于氧化应激和神经元损伤(Kupershmidt和Youdim,2023; Long等,2023)。铁是细胞代谢的重要元素,但是过量铁可以产生活性氧(ROS),损害细胞成分(例如脂质,蛋白质和DNA)(Ying等,2021)。因此,铁稳态受到各种蛋白质(例如转铁蛋白,铁蛋白和肝素)在大脑中的严格调节(Singh等,2014)。铁失调和沉积对神经元功能和存活具有多种影响。例如,铁可以改变谷氨酸受体和转运蛋白的表达和活性,从而导致兴奋性毒性和突触功能障碍。铁可以触发线粒体功能障碍,从而减少能量产生并增加ROS的产生(Cheng等,2022)。除了将小胶质细胞和星形胶质细胞刺激,铁还可以刺激神经蛋白的炎症和细胞因子释放。此外,铁可以与其他金属(例如铜和锌)做出反应,从而影响它们的可用性和毒性。磁化敏感性可以测量组织在磁场中磁化的容易程度(Conte等,2021)。此外,错误折叠的蛋白质超氧化物歧化酶1(SOD1)和TAR DNA结合蛋白43(TDP-43)与家族性和零星ALS相关,可以通过铁(Basso等,2013; Ndayisaba et al。,2019年)汇总和清除。磁共振成像(MRI)是诊断各种疾病的强大工具,例如神经系统疾病(Kollewe等,2012; Bhattarai等,2022; Ghaderi,2023; Ghaderi et al。,2023b; Mohammammadi等,2023)。定量敏感性映射(QSM)是一种敏感的MRI技术,用于检测组织中的磁敏感性变化(Acosta-Cabronero等,2018)。QSM是一种可以与MRI结合使用的技术,以测量组织的磁敏感性,它反映了组织在磁场中磁化的容易程度(Ravanfar等,2021)。具有高磁化率的组织,例如富含铁的组织,会使MRI扫描中的磁场扭曲(Duyn,2013年)。QSM可以提供各种大脑区域中铁浓度的准确估计值,例如皮层,基底神经节和小脑和QSM,并且QSM在检测包括ALS在内的神经退行性疾病中的铁沉积方面表现出了令人鼓舞的结果(Ravanfar等,2021年)。易感加权成像(SWI)是另一种MRI技术,它可以可视化具有高磁化率的组织(Liu等,2021)。swi结合了定性显示组织磁场变化的幅度和相位信息,但它受到区域界面的影响和图像伪像的影响,这些效果随图像参数而变化(Haacke等,2009; Mittal等,2009; Haller等,20221)。SWI也已用于诊断和监测涉及铁沉积的疾病,例如神经退行性疾病和神经肌肉疾病(Schweitzer等,2015; Lee等,2017; Welton等,2019),但是
摘要肌萎缩性侧硬化症会影响上和下运动神经元,从而导致进行性神经病理学,从而在症状发展前很久就会导致受影响神经网络的结构和功能改变。某些遗传突变,例如C9ORF72中的扩张,使运动神经元群体诱发病理功能障碍。但是,尚不清楚潜在的病理倾向如何影响脆弱网络内的结构和功能动力学。在这里,我们研究了ALS患者衍生的运动神经元网络的微观和中尺度动力学。我们首次表明,ALS患者衍生出具有内源遗传易感性的运动神经元,以细胞质TDP-43夹杂物的形式发展出经典的ALS细胞病理学,并自组织为计算效率高效的网络,尽管具有与健康的对照组相比具有更高的代谢成本的功能标志。这些标志包括微观障碍和中尺度补偿,包括功能集中度增加。此外,我们表明这些网络通过表现出诱导的多动症而极易受到短暂扰动的影响。
逐渐耗尽。此外,它还逐渐消耗海马中的热休克转录因子1,从而对成年海马神经发生产生负面影响。此外,不仅Piezo2-Piezo2 Crosstalk在本体感受性的初级传入终端和由于丢失的Piezo2引发的Huygens同步而逐渐逐渐破坏了ALS,但Piezo2-Piezo1 crosstalk在Peripery上也破坏了。Syndecans,尤其是神经系统中的Syndecan-3,是维持此压电串扰的关键参与者。syndecan-3的检测到的电荷改变变体可能会促进压电串扰的损害,以及对运动神经元和海马的基于质子的信号的进行性损失。kCNA2的变体还可以促进
b“ Quralis正在应用精确医学来推进新型的治疗管道,用于治疗肌萎缩性侧面硬化症ALS,额颞痴呆ftd和其他神经退行性疾病。我们的干细胞技术可以测试各种疗法的功效,并为诊所提供过渡桥,从而实现目标验证,发现和分子选择。我们正在推进三个反义和小分子计划,以解决大多数患者的ALS的子形式。与世界一流的思想领导者,药物开发人员和患者倡导者一起,我们的成长团队处于神经退行性研究和开发的领先地位。我们很荣幸能在新英格兰的创业生态系统中赢得了凶猛的15和新英格兰风险投资协会的最佳新兴生命科学公司Nevy奖。我们是神经退行性疾病生物学,干细胞和反义寡核苷酸ASO技术,生物标志物和小分子设计的先驱。我们对我们的患者社区,科学,同事和我们自己诚实和同情,分享了一种共同的热情,以紧急发现ALS和FTD的新药物。我们代表了各种背景和价值协作。我们认为,可以通过精确靶向正确的患者,确定正确的疾病机制,并精心开发疾病改良的临床有意义的疗法来改善患者生活,从而实现治疗神经退行性疾病的成功。QULARIS的立场摘要正在寻求一位积极进取的副科学家来领导和管理我们的复合管理系统。该职位将与团队成员紧密合作,以学习到适当的跟踪和组织决策实验中使用的化合物。主要职责”
内含子GGGGCC(G 4 C 2)在人C 9 ORF 72基因内的六核苷酸重复膨胀是家族性肌营养性侧面硬化症(ALS)和额叶临时痴呆(FTD)(FTD)的最常见原因(C 9 Als/FTD)。重复相关的非aug(RAN)翻译反复含量C 9 ORF 72 RNA导致神经毒性二肽重复蛋白(DPRS)的产生。在这里,我们开发了一个高通量药物筛选,用于鉴定DPR水平的正和负调节剂。我们发现HSP 90抑制剂Geldanamycin和醛固酮拮抗剂螺内乳酮通过分别通过蛋白酶体和自噬途径促进蛋白质降解,从而降低了DPR水平。令人惊讶的是,营地升高化合物增强蛋白激酶A(PKA)活性提高了DPR水平。 通过药理学和遗传方法抑制PKA活性,在C 9 ALS/FTD的果蝇模型中,细胞中的DPR水平降低并挽救了病理表型。 此外,敲低DPR的PKA催化亚基与降低的翻译效率相关,而PKA抑制剂H 89降低了C 9 ALS/FTD患者衍生的IPSC运动神经元的内源性DPR水平。 一起,我们的结果表明,在C 9 ALS/FTD中调节DPR水平的新途径。令人惊讶的是,营地升高化合物增强蛋白激酶A(PKA)活性提高了DPR水平。通过药理学和遗传方法抑制PKA活性,在C 9 ALS/FTD的果蝇模型中,细胞中的DPR水平降低并挽救了病理表型。此外,敲低DPR的PKA催化亚基与降低的翻译效率相关,而PKA抑制剂H 89降低了C 9 ALS/FTD患者衍生的IPSC运动神经元的内源性DPR水平。一起,我们的结果表明,在C 9 ALS/FTD中调节DPR水平的新途径。
可以从我们的研究应用程序PWC Plus中的监管视野扫描中获得有关该主题的正在进行的更新。在此处阅读有关可能性和提供的更多信息。
C9ORF72基因中的GGGGCC 24+六核苷酸重复膨胀(HRE)是肌萎缩性侧向硬化症(ALS)和额颞痴呆(FTD)最常见的遗传学原因(ALS),致命的神经退行性疾病,没有治疗或不接受疾病的疾病疾病的疾病降低或不得已。神经元死亡的机械基础包括C9orf72单倍依耐酸,核中RNA结合蛋白的隔离以及二肽重复蛋白的产生。在这里,我们使用了腺相关的病毒载体系统来提供CRISPR/CAS9基因编辑机构,以实现从C9ORF72基因组基因座中移除HRE。我们证明了三种含有膨胀的小鼠模型(500 - 600重复)以及患者来源的IPSC运动神经元和脑类动物(450重复)的三种小鼠模型(450个重复)中HRE的成功切除。这导致了RNA焦点,多二肽和单倍耐酸的降低,这是C9-ALS/FTD的主要标志,这使得这是这些疾病的有前途的治疗方法。