方法:为了评估我们的方法在体内的安全性和有效性,我们使用了两种不同的 CRISPR 编辑方法。首先,我们通过向胚胎注射 APP C 端靶向 CRISPR 在 Wt 和 APP 敲入 (APP NL-GF ) 小鼠中生成种系编辑。然后,我们选择创始者来生产稳定的 WT 和 APP-KI 菌株,其中 APP C 端被基因组删除(分别称为 WtΔC 和 KI-ΔC 小鼠)。在另一组实验中,我们将 APP C 端 CRISPR 包装到 AAV 载体中,并将 AAV 系统性注射到 APP-KI 小鼠体内。结果:与 Wt 对照相比,WtΔC 没有表现出认知缺陷或组织学异常。KI-ΔC 显示淀粉样蛋白 β 斑块和相关神经炎症标志物显著减少,并且在用 AAV 治疗的 KI 小鼠中也观察到了类似的结果。此外,种系和体细胞 APP C 端编辑均导致神经保护性 sAPPα 的增加。
基因组编辑的技术,能够引入DNA序列中的精确变化,有可能导致新的遗传疾病治疗方法。表皮溶解Bullosa(EB)是一组以极端皮肤脆弱性为特征的稀有遗传疾病。具有最严重的表型之一的EB(RDEB)的隐性营养不良亚型,是由Col7a1突变引起的。在这项研究中,我们报告了一种基因编辑方法,用于基于体内同源指导的修复(HDR)基因校正,该方法使用了CRISPR-CAS9系统,该系统使用核糖核蛋白(RNP)复合物与供体与adeno相关的Veral Veral Vec-Vec-vec-tors(AAVS)结合使用。我们证明了在原代rdeb ker-固有细胞中实现含有疗法的舒适突变校正频率,其中包含不同的COL7A1突变以及有效的HDR介导的HDR介导的COL7A1模量,可在健康的索有索有索有线山脉CD34 +细胞和细胞中的细胞中(MSC)。这些结果是HDR介导的基因校正的概念证明,其不同细胞类型具有RDEB的治疗潜力。
基因疗法对遗传性单基因疾病,癌症和罕见遗传疾病的患者有希望。天然存在的腺相关病毒(AAV)为临床基因转移提供了合理的载体,因为它缺乏明显的临床致病性和可在多种细胞类型的治疗基因进行长期持续表达的治疗基因的工程性。AAV已被生物工程,以生产许多经批准或晚期发育的基因疗法的重组AAV(RAAV)载体。然而,持续的挑战会更广泛地使用RAAV载体介导的疗法。这些包括对RAAV载体的免疫力,有限的转基因包装能力,亚最佳组织转导,插入诱变的潜在风险和载体脱落。本综述的重点是针对RAAV的免疫力,抗AAV中和抗体(NAB)介导,自然暴露于AAVS或RAAV载体给药后引起。我们对决定AAV血清阳性的因素进行了深入的分析,并检查了管理抗AAV NAB的临床方法。还讨论了用于量化抗AAV NAB水平和克服现有AAV免疫力的策略的方法。广泛采用RAAV媒介介导的基因疗法将需要更广泛的临床欣赏,以减轻其影响。
SARS-CoV-2 疫情已影响全球超过 1.85 亿人,导致超过 400 万人死亡。为了控制疫情,人们仍然需要安全的疫苗,这些疫苗应以低剂量和可扩展的剂量提供持久的保护,并且可以轻松部署。AAVCOVID-1 是一种腺相关病毒 (AAV) 疫苗,基于刺突基因,在小鼠和非人类灵长类动物中单次注射后就表现出强大的免疫原性,并为猕猴提供完全保护,使其免受 SARS-CoV-2 攻击。峰值中和抗体滴度在 1 年内持续存在,并由功能性记忆 T 细胞反应补充。AAVCOVID 载体在人类中没有相关的预先存在的免疫力,也不会引起与基因治疗中使用的常见 AAV 的交叉反应。载体基因组的持久性和表达在注射后会减弱。单次低剂量要求、高产量可制造性以及室温下储存 1 个月的稳定性可能使该技术非常适合支持全球范围内针对新出现病原体的有效免疫运动。
与腺相关病毒(AAV)载体是治疗基因组编辑的重要输送平台,但受到货物限制的严格限制,尤其是对于Cas9S等大型效应子。同时传递多个向量可以限制剂量和功效,并增加安全风险。使用紧凑型效应器的使用使Cas9的单-AAV输送具有1-3个指南,用于使用最终连接维修途径的编辑,但是许多精确的编辑可以在体内纠正引起疾病的突变,需要与同源性修复(HDR)模板。在这里,我们描述了一个〜4.8-kb AAV平台,该平台表达NME2CAS9和两个SGRNA以产生分段删除,或一个带有HDR模板的单个SGRNA。我们还检查了向量中的NME2CAS9目标位点的实用性,以进行自我激活。我们证明,这些平台可以有效地治疗小鼠中的两种疾病模型[I型遗传性酪氨酸(HT-I)和粘多糖糖型I型(MPS-I)]。这些结果将使单载体AAV能够实现各种治疗基因组编辑结果。
SARS-COV-2大流行已经影响了全球超过1.85亿人,导致超过400万人死亡。为了遏制大流行,继续需要安全疫苗,以低和可扩展的剂量提供耐用的保护,并且可以轻松部署。在这里,Aavcovid-1是一种腺相关病毒(AAV),基于尖峰基因的疫苗候选者在单个注射后表现出在小鼠和非人类培训中的有效免疫原性,并且在Ma-Caques中完全保护了SARS-COV-2挑战。峰值中和抗体滴度在1年时持续,并与功能性记忆T细胞反应相辅相成。Aavcovid载体在人类中没有相关的先前免疫力,也不会引起对基因治疗中使用的常见AAV的交叉反应。注射后载体基因组持久性和表达减弱。单一的低剂量需求,高收益的生产性和1个月在室温下存储的稳定性可能使得这项技术非常适合在全球范围内支持有效的新兴病原体的有效免疫效果。
A2 空军情报参谋官(组成级) AA(1)攻击评估;(2)损耗分析;(3)高射炮;(4)进近通道;(5)自动关联器 AAA(1)高射炮;(2)空中进近通道 AAAOB 高射炮作战序列 AABNCP 先进机载国家指挥所 AAC 阿拉斯加空军司令部 AACB 航空航天协调委员会 AACE 陆军备用指挥与控制部队 AACOMS 陆军区域通信系统 AACS 姿态与天线控制子系统 AAD 空降突击师 AADC(1)陆军防空司令部; (2) 区域防空指挥官 AADCCS 区域防空指挥和控制系统 AADP 区域防空计划 AADS 防空系统 AAE 陆军采购执行官 AAF 陆军机场 AAFES 陆军和空军交换服务 AAFIF 自动化空中设施信息文件 AAG 陆军炮兵群 AAI 空对空拦截 AAIFF 空对空识别 敌我 AAM 空对空导弹 AAO 作战区分析 AAR (1) 有源阵列雷达;(2) 行动后报告 AAS 分析员自动化部分 AASLT 空中突击 AATS 自动化架构工具套件 AAVS 航空航天视听服务 AAW 反空战 AAWC 反空战指挥官 AB 空军基地 AB2 空战指挥系统 (ABCS) 旅及以下 ABC 空降兵 ABCCC 空降战场指挥和控制中心 ABCOMM 备用/备份通信
(AAV)。为了克服这些限制,我们开发了一种替代基因编辑策略,使用单个 AAV 载体和表达 Cre 依赖性 Cas9 的小鼠系,实现整个神经系统内有效的细胞类型特异性编辑。从基因组位点表达 Cre 依赖性 Cas9 提供了空间,可以将用于基因编辑的指导 RNA 与 Cre 依赖性、遗传编码的工具一起包装在一起,以使用单个病毒来操纵、映射或监测神经元。我们用神经科学中的三种常见工具验证了这一策略:ChRonos(一种通道视紫红质),用于使用光遗传学研究突触传递,GCaMP8f 用于使用光度测定法记录 Ca 2+ 瞬变,以及 mCherry 用于追踪轴突投射。我们在多个脑区和细胞类型中测试了这些工具,包括伏隔核中的 GABA 能神经元、从腹侧苍白球投射到外侧缰核的谷氨酸能神经元、腹侧被盖区中的多巴胺能神经元和外周的本体感受神经元。这种灵活的方法可以帮助通过一次病毒注射识别和测试影响突触传递、电路活动或形态的新基因的功能。
项目名称:自治移动代理商(机器人)的开发部门:电气和计算机工程,计算机和信息科学与工程,机械和航空工程师教师:Eric Schwartz,ems@ufl.edu博士学生导师:不可用:秋季,春季,夏季学生级别:新生,大二,大三,高年级;每学期15-50名学生:与他人学习和合作的愿望。信用:0-3通过EGN4912(通常在第一学期的0个学分)津贴:除非选择大学学者或新兴学者的申请要求,否则没有任何津贴:教师访谈;通过ems@ufl.edu将电子邮件发送给Schwartz博士,以设置约会申请截止日期:ASAP网站:https://mil.ufl.edu/项目描述:MIL提供跨学科的协同环境,用于研究和开发智能,自主机器人。我们对涵盖机器学习,实时传感器集成(包括计算机视觉,LADAR,SONAR,RADAR,IMU等)的自主移动代理的理论和实现进行研究。),优化和控制。MIL研究的应用(产生了功能性机器人)包括自动水下车辆(AUV),自主水面车辆(ASV),自动陆地车辆(ALV)和自动驾驶汽车(AAVS)。MIL定期参加国际机器人比赛(并以前赢得了五项世界冠军)。
对于各种类型的听力损失,但当前的治疗方案仍主要限于声音放大和人工耳蜗(Muller&Barr-Gillespie,2015; Schilder等,2018)。SYNE4中的变体(含有核包膜家族成员4)的变体会导致以色列,英国和土耳其个人的常染色体隐性进行性,高调听力损失(Panelapp。; Horn等人,2013年; Masterson等人,2018年)。syne4代码为蛋白质Nesprin-4编码,核骨骼和细胞骨架(LINC)复合物的接头成员(Roux等,2009)。Nesprins位于外部核膜上,它们与内部核膜太阳蛋白相互作用,并与细胞质细胞骨架元素(如肌动蛋白和中间丝)以及运动蛋白以及诸如驱动蛋白(Cartwright&KarakakeSogoglou,2014年)等运动蛋白。缺乏SYNE4或SUN1的小鼠表现出渐进的听力损失,让人联想到DFNB76;在SYNE4基因敲除小鼠(SYNE4 /)中,毛细胞正常发展,但外毛细胞(OHC)核逐渐失去其基础位置,导致随后的OHC变性(Horn等,2013)。在动物模型中的初步结果确定腺相关病毒(AAV)是聋哑基因治疗的有前途的候选者(Landegger等,2017; Akil等,2019; Isgrig et al,2019; Isgrig et al,2019; Nist-Lund等,2019)。AAV似乎很少引起免疫反应,重组AAVs以非常低的速率整合到宿主中,从而降低了遗传毒性的风险(Nakai等,2001)。天然AAV血清型的初始特征表明内耳细胞类型的转移率相对较低,尤其是OHC(Kilpatrick等,2011)。然而,最近开发的合成AAV Capsids似乎已经克服了这一障碍。已显示AAV9-PHP.B在小鼠和非人类灵长类动物中以高速率转导内毛细胞和外毛细胞(Gyorgy等,2019; Ivanchenko等,2020; Lee等,2020)。在这项研究中,我们将SYNE4 /小鼠用作DFNB76隐性耳聋的模型,以开发基于AAV9-PHP.B的这种形式的人类耳聋的基因治疗作为向量。为转导OHC的形态恢复加上形态恢复,我们观察到了增强的OHC存活,改善了听觉的脑干反应(ABR)以及恢复的失真产物耳声发射(DPOAE)。此外,我们证明了内耳的功能恢复足以驱动