新技术不可避免地越来越多地融入到机构和人们的活动中,这一事实对可持续性提出了挑战,因为充分利用进步将使发展更加尊重环境。考虑到上述情况,这项工作的目的是调查与人工智能、清洁生产和可持续绩效相对应的研究趋势。为此,在科学数据库 Scopus 和 Web of science 中对 110 篇论文进行了文献计量分析。为了进行统一、清理和图形可视化过程,使用了技术工具 Vantage Point、R 中的 Biblioshiny 和 VoSviewer。结果展示了近年来该主题在科学领域的当前趋势。对各国的分析表明,亚洲大陆处于世界领先地位。另一方面,关键词的研究强调了研究的三大基本支柱的重要性,可能存在非实证关系。结果表明,人工智能、清洁生产和可持续性之间的接近性。
OBC GER FREE 1 2 252:MAG/MFR/MTB-农业推广教育(Azamgarh校园)OBC GER FREE 1 2 252:MAG/MFR/MTB-农业推广教育(Azamgarh校园)
鉴于人工智能开发人员在确保人工智能系统、其成果和此类系统用户的责任方面发挥着重要作用,我们需要他们采取负责任、合乎道德和负责任的方法。因此,我们建议这些参与者参与旨在产生负责任的人工智能设计和使用的政策制定过程。根据我们的实证研究结果,我们提出了几项建议,以弥补当前在追求负责任的人工智能时将道德原则、认证标准和解释方法作为问责机制所发现的缺陷。我们希望这些建议能够有助于讨论如何在实践中确保问责制,同时兼顾开发人员、研究人员和公众的观点。
面临高风险并在纯数字领域运营的组织,例如计算机安全和许多金融服务,必须满足两个相互矛盾的目标:他们需要大规模和快速地识别数字威胁,同时避免自动化处理导致的错误。对高可靠性组织的研究发现,同时实现这些目标面临多重挑战,因为自动化往往使组织的运营“盲目”,无法从容应对高风险领域不断变化的复杂情况。在数字运营中,一个特殊的挑战来自“框架问题”,即算法无法适应其开发人员最初的认知框架中未确定的环境。在一家计算机安全公司 (F-Secure) 内进行了一项探索性、理论生成案例研究,以研究在数字领域行动的组织如何通过缓解框架问题来实现高可靠性。本文探讨了数字化组织操作的认知和实用特征,以及这些特征如何应对框架问题。集体正念被认为是在这样的社会技术环境中出现的,通过精心分层的系统组合(人类)有意识和(数字)无意识的操作,而组织的核心操作仍然是数字化和算法化的。研究结果指出了迄今为止与数字化组织相关的未探索的可靠性挑战,以及克服和/或缓解这些挑战的几种相关方法。
航空旅行已成为人们生活中必不可少的一部分。不仅是为了方便起见,而且是因为它是前往遥远国家的最快方式,有时涵盖了其他运输方式可能需要几天甚至几个月的距离。因此,航空业的竞争加剧和降低的飞行成本使航空旅行更加负担得起,从而使其能够吸引更多的受众。到2023年,全球航空业为大约45亿乘客提供了服务。根据2021年的数据,任何给定时间的空气中估计的平面数为15,500至17,500。随着航空业的发展,全球飞行数量增加了,因此进行更好的飞机跟踪和安全性的必要性变得更加至关重要。确保乘客安全的需求推动了新技术进步的发展。这是ADS-B(自动依赖性监视广播)技术发挥作用的地方,可以增强飞机跟踪并提高空中交通管理的效率。ADS-B技术通过在飞机的速度,高度和位置提供实时数据来提供帮助,从而可以更准确,更安全地跟踪飞机。尽管有好处,但实现全球ADS-B覆盖范围仍然是一个重大挑战。传统的部署方法通常受到高成本和后勤障碍的阻碍,尤其是在稀缺地面站的农村和服务不足的地区。然而,巨大的尚未开发的潜力在于将这一基础设施分散,并激励个人有助于扩大ADS-B覆盖范围。目前,营利性公司主导了ADS-B地面站基础设施,导致可扩展性缓慢和诸如土地租金和维护之类的高昂经常性成本。此覆盖范围不仅会影响航空安全性,而且还限制了利用ADS-B数据来用于更广泛用例(包括物流,研究和情报收集)的能力。derad网络在这一点上步骤,并授权个人使用便宜且易于安装的设备建立和操作ADS-B地面站。参与者被DRD令牌激励,创建了一个互惠互利的系统,其中贡献者在增强全球航空安全的同时获得奖励。通过分散ADS-B基础架构,DERAD网络克服了传统系统效率低下,实现了更快的可扩展性和较低的成本。该模型提高了航空安全性,并为ADS-B数据的创新应用创造了机会。例如,研究人员,记者和物流公司可以访问分散的市场以获取实时飞行数据,从而在跟踪和分析中解锁了新的可能性。derad网络将复杂的集中系统转换为可访问,可扩展的解决方案,为全球空中交通管理设置新标准
我们认为,人工智能开发是对现有内容的一种可接受的、变革性的、对社会有益的使用,受到合理使用的保护,并有助于实现版权法的目标,包括“促进科学和实用艺术的进步”。4 人工智能模型具有创造性、分析性和科学性应用,远远超出了“按一下按钮,获取一张图片”或“按一下按钮,获取一首诗”的范围。这些模型将改变基本服务的提供方式,从医疗建议到个性化辅导;推动科学研究的突破;彻底改变我们在线搜索和获取信息的方式;并支持一些最重要的公共和私人机构的知识管理、分析或决策。此外,我们认为现行法律为防止侵权使用人工智能工具提供了足够的保障,尽管我们已敦促政策制定者在必要时加强对不当使用身体或声音肖像的规则。
摘要 应对可持续发展政策挑战需要能够驾驭复杂性的工具,以改善政策流程和结果。过去十年来,人们对人工智能 (AI) 工具的关注度和政府对其使用的期望急剧上升。我们对学术和灰色文献进行了叙述性回顾,以调查人工智能工具如何用于政策和公共部门决策。我们发现,学者、政府和顾问对人工智能表达了积极的期望,认为人工智能可以或应该用于解决广泛的政策挑战。然而,关于公共决策者如何实际使用人工智能工具或对使用结果的详细洞察的证据却少得多。从我们的研究结果中,我们得出了将人工智能的承诺转化为实践的四个教训:1) 记录和评估人工智能在现实世界中对可持续发展政策问题的应用;2) 关注现有和成熟的人工智能技术,而不是投机性的承诺或外部压力;3) 从要解决的问题开始,而不是要应用的技术;4) 预测并适应可持续发展政策问题的复杂性。
