Prime 编辑 (PE) 是一种强大的基因组工程方法,能够将碱基替换、插入和删除引入任何给定的基因组位点。然而,PE 的效率差异很大,不仅取决于目标基因组区域,还取决于编辑细胞的遗传背景。在这里,为了确定哪些细胞因素会影响 PE 效率,我们针对 32 个 DNA 修复因子进行了有针对性的遗传筛选,涵盖了所有已报道的修复途径。我们表明,根据细胞系和编辑类型,错配修复 (MMR) 的消融可使 PE 效率提高 2-17 倍,涵盖多种人类细胞系、编辑类型和基因组位点。关键 MMR 因子 MLH1 和 MSH2 在 PE 位点的积累表明 MMR 直接参与 PE 控制。我们的研究结果为 PE 机制提供了新的见解,并提出了如何优化其效率。
摘要在缺席癫痫患者中,反复癫痫发作可以显着降低其生活质量,并导致尚无法治疗的合并症。缺失癫痫发作的特征是与意识的短暂变化相关的脑电图上的尖峰和波排放。但是,在癫痫发作期间和外部,大脑对外部刺激的反应仍然未知。这项研究旨在研究来自Strasbourg(Gaers)的遗传缺失癫痫大鼠(GAERS)的反应性,这是一种缺乏癫痫的大鼠模型。动物是使用安静的零回波时间,功能磁共振成像(fMRI)序列在非墨水清醒状态下成像的。在间隔和发作时期应用了感觉刺激。全脑血流动力学反应。此外,使用平均场模拟模型来解释状态之间视觉刺激的神经反应性的变化。在癫痫发作期间,对两种感觉刺激的全脑反应受到抑制并在空间上受到阻碍。在皮质中,尽管采用了刺激,但在癫痫发作期间血液动力学反应在癫痫发作期间呈负极极化。平均场模拟显示由于刺激引起的活动受到限制的传播,并且与fMRI发现很好地达成了一致。结果表明,在缺席的情况下,在这种缺失的癫痫过程中,缺乏癫痫发作会阻碍感官处理,甚至抑制了感官处理。
因此,我们对 RuO 2 晶体进行了极化和非极化中子衍射实验,这些实验通过磁化和电导测量以及 X 射线衍射进行表征 [8]。单晶采用两种不同的传输分子通过化学气相传输生长。此外,通过退火商业化合物获得了粉末样品。对 D9、D3 和 IN12 进行了中子实验,并在 Bruker D8 venture 衍射仪上研究了晶体结构。我们无法在低至 2K 的温度下确认我们晶体中提出的结构扭曲。在 X 射线和长波长中子实验中,没有超结构反射 [3] 破坏金红石型结构的对称性。在短中子波长下观察到此类峰,但可归因于多重衍射。在我们的晶体中,钌空位的数量低于百分之几。极化中子实验并未表明对于所提出的传播矢量 ⃗ k =(0,0,0) [3] 存在磁布拉格反射。在我们的实验中,即使是有序矩比声称的 [3] 小五倍的磁序也会产生显著的强度。在我们的化学计量样品中可以排除这种反铁磁序 [8]。[1] L. Smejkal 等人,2022 年,Phys. Rev. X 12(3),031042。[2] L. Smejkal 等人,2022 年,Phys. Rev. X 12(4),040501。[3] T. Berjilin 等人,2017 年,Phys. Rev. Lett. 118,077201。[4] L. Smejkal 等人,2023,物理。莱特牧师。 131, 256703。 [5] A. Smolyanyuk 等人。 ,2024,物理。 Rev. B. 109 , 134424. [6] M. Hiraishi 等人。 ,2024,物理。莱特牧师。 132, 166702。 [7] P. Keßler 等人。 ,2024 年,npj 自旋电子学 2,50。 [8] L. Kiefer 等人。 ,2024 年,arXiv,2410.05850。
胚胎培养基中的微生物污染可能会影响 IVF 过程中胚胎的早期发育和临床结果。生殖道感染是培养污染的最常见原因,但环境空气质量也可能对接受 IVF 程序的不孕夫妇的生殖结果产生不利影响。胚胎学实验室的微生物污染监测是强制性要求,并且每天在层流垂直罩下进行检测。在本研究中,我们调查了在实验室 5 年活动中,当层流罩下发生阳性被动空气采样且胚胎培养中没有明显污染时进行的 IVF 结果。我们进行了 570 次空气采样,在 13 例(2.28%)的 TSA 沉降板中分离出至少 1 CFU 的微生物。由于显微镜下没有可检测到的微生物或肉眼可见培养基浑浊度/颜色变化(污染率为 0%),因此不怀疑培养基中存在感染。 “受污染”的 P 组和“阴性”的 N 组在生化妊娠率、活产率和流产率方面没有统计学上的显著差异。令人惊讶的是,我们发现 P 组的临床妊娠率比 N 组更高,这一发现可能是由于 P 组的意外年龄较低(p = 0.0133)。数据显示,在胚胎培养基中没有可检测到的污染的情况下,当 A 级环境中出现空气阳性样本时,IVF 周期是安全的。
性别对缺乏的影响不太清楚,因为一些研究报告说,男女学生之间的学生不存在差异(Carey等,2015; Gase等,2014; Ghanem,2021; Ghanem,2021; Gottfried&Gee,2017; Gottfried&Gee,2017; Karlberg et al。 Al。,2022年,Escheverria等人,2014年,Grinshteyn&Yang,2017年Al。,2014年)缺席。性别和性别少数群体的研究为属于这些群体的年轻人的缺席提供了适度的证据(Aragon等,2014; Birkett等,2014; Burton等,2014; Fields&Wotipka,2022)。
“抽象空间” 2023。Chiara Passa 的 AR 和人工智能艺术作品。“抽象空间”通过整面墙的投影,将一个虚构的极简环境(我使用 Chat GPT API 创建)与真实空间重叠,而这个空间一旦被观众使用 AR-AI 应用程序修改,就会神秘、怪异或有时不完整地重新出现在我们周围。观众在这个新的不稳定空间中,通过观看由几何体积阴影构成的新 AI 空间,体验到一种缺失或空虚的感觉,这些阴影是根据缓冲过程沿光源方向挤压图元轮廓而创建的。还提供视频手册(屏幕 7')版本。视频预览:https://youtu.be/zzAaf7hxTYI Android 应用程序和相关矩阵可供下载。每个动画持续 6'.30''。 https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace2&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace3&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace4&hl=en
动物通过大脑中对世界的内部表征来指导其行为。我们旨在了解猕猴大脑如何存储这些一般的世界知识,重点是物体颜色知识。在猕猴中进行了三项功能性磁共振成像 (fMRI) 实验:观看彩色和无色光栅、观看他们熟悉的水果和蔬菜的灰度图像(例如,灰度草莓)以及观看真色和假色物体(例如,红色草莓和绿色草莓)。我们在色块中观察到了稳健的物体知识表征,尤其是位于 TEO 周围的色块:活动模式可以根据物体的记忆颜色对物体的灰度图片进行分类,并且这些区域中的响应模式可以在彩色光栅观看和灰度物体观看之间转换(例如,红色光栅 - 草莓的灰度图像),这样通过观看彩色光栅训练的分类器可以根据其记忆颜色成功地对灰度物体图像进行分类。我们的结果显示了猕猴物体颜色记忆的直接积极证据。这些结果表明基于感知的知识表征是一种保守的记忆机制,并为利用猕猴模型研究这种特殊的(语义)记忆表征开辟了一条新途径。
房颤(AF)是全球主要的医疗保健负担。对于对药理干预具有抗性的AF,标准侵入性治疗是一种肺静脉分离(PVI)程序。神经节丛(GP)消融可以用作PVIS的辅助治疗,从而降低了AF复发的可能性。高频刺激(HFS)是一种用于识别触发gp位点的技术。但是,要定位GP位点,必须在整个心房中输送顺序的HF。因此,确保HFS交付的安全性是避免过度起搏的不可逆转损害的组成部分。我们测试了TAU-20版2个神经模拟器,这是一种新型电生理起搏和记录系统的原型,该原型具有指导心脏内AF处理的潜力。使用与人心脏的解剖结构和生理学相似的离体猪Langendorff模型,我们确认HFS可以成功触发AF,表明HFS阳性位置包含GP位点。此外,我们发现通过TAU-20版本2传递的HFS不会对心脏造成任何损害。这些发现的证据表明,一旦完全优化,TAU-20系统就可以适用于临床环境。
端粒(ALT)途径的替代延长可在很大一部分癌症中保持端粒长度,这些癌症与临床不良结局相关。因此,对于为Alt Cancer制定新的治疗策略,对ALT机制有更好的了解。SUMO修饰端粒蛋白与Alt端粒相关PML体(APB)的形成,其中端粒聚集并富含DNA修复蛋白,以促进ALT中的同源性远距离DNA合成。但是,仍然未知(如果是这样),Sumo是否支持ALPB形成。在这里,我们表明,含有DNA修复蛋白的相扑凝结物在没有APB的情况下可以维持端粒。在缺乏APB的PML基因敲除Alt细胞系中,我们发现表现为PML和APB的ALT特征所必需的Sumoylation。化学诱导的端粒靶向相扑会在PML无效细胞中产生冷凝物的形成和ALT特征。这种效应需要Sumoylation和Sumo相互作用基序(SIMS)之间的相互作用。从机械上讲,Sumo诱导的效应与端粒处的DNA修复蛋白的积累有关,包括Rad52,Rad51AP1,RPA和BLM。此外,rad52可以以相关方式与BLM解旋酶合作,在端粒上富集相分离,并在端粒上富集Sumo,并促进端粒DNA合成。共同表明,Sumo凝结物形成了DNA修复因子之间的协作,以支持没有PML的ALT端粒维护。鉴于Sumoylation抑制剂在癌症治疗中的有前途的影响,我们的发现表明它们在扰动端粒癌细胞中的驱动端粒维持中的潜在使用。