fi g u r e 2皮肤细菌群落在生命的第一年表现出强烈的时间变化。(a)随着年龄的增长,皮肤细菌门和物种相对丰度的演变的一般概述。门以不同的颜色表示,物种以不同的阴影表示。门显示,所有年龄段的最大相对丰度低于2%的物种被纳入“其他年龄段”。最深的分类分类分类包括在未解决的物种的标签中,而更深的未解决分类学水平则标记为“未知”。(b)在不同年龄观察到的不同皮肤细菌扩增子序列变体(ASV)的数量。(c)对皮肤细菌群落的非金属多维缩放(NMDS)分析,每个年龄段显示了95%的数据椭圆。(d)以香农多样性指数(SDI)为代表的年龄跨年龄的皮肤细菌多样性。(e)跨年龄段所选ASV的相对丰度,显示为稀有,标准化,缩放和对数转换的读数。框图仅在非零值上绘制。所有图都代表跨时间(n = 124)的完整纵向样本集。通过配对Wilcoxon检验评估的统计显着性与使用Benjamini和Hochberg方法进行多次比较的P值进行了评估。ns:p> .05(未显示),*:p≤.05,**:p≤.01,***:p≤.001,****:p≤.0001。
热带海洋是展示气候变化信号的第一个地方,影响了海洋鱼类的栖息地分布和丰度。对股票的这些变化以及随后对渔业生产的影响可能对依赖渔业粮食安全和生计的沿海社区产生相当大的影响。因此,了解气候变化对热带海洋渔业的影响是迈向制定可持续的,适合气候的渔业管理措施的重要一步。我们采用一种既定的空间荟萃分析方法来评估菲律宾针对的关键物种捕获渔业的物种分布建模数据集。我们在两个全球排放场景(RCP4.5和RCP8.5)和不同程度的捕鱼压力下分析了数据集,以量化目标社区的潜在气候脆弱性。我们发现,尤其是对上层物种的气候变化的广泛反应,预计在大部分案例研究领域中,丰富的大量会下降,这突出了面对迅速变化的气候,挑战维持粮食安全的挑战。我们认为,面对气候变化的菲律宾的可持续渔业管理只能通过管理策略来实现,从而允许减轻已经锁定在近期气候系统中的压力和适应压力。我们的分析可以支持这一点,从而为渔业经理提供了识别潜在的气候变化热点,亮点和避难所的手段,从而支持了适合气候的管理计划的制定。
摘要M依赖依词学涉及遗传材料提取和直接从环境样本中进行测序,以获得微生物及其周围环境之间存在的见解和关系。在包括在坦桑尼亚阿鲁沙地区发现的苏打湖等极端环境中进行的研究很少。这项研究记录了确认湖泊末端的高pH值和盐度值。全长16S rRNA读取通过PACBIO测序的读数用于揭示细菌群落的首次宏基因组快照,从海岸线水域的10个随机点。结果表明,蛋白细菌和企业的优势分别为98.46%和70.46。α-杆菌(93.59%),拟杆菌(23.80%)和杆菌(23.19%)是最主要的类别。Oceanibaculaceae(52.43%),Rhizobiaceae(66.62%)和Izemoplasmataceae(12.50%)是最主要的家庭。主属分别为Oceanibaculum(52.44%),Allorhizobium(65.59%)和Izimaplasma(12.50%)。多样性指数显示出高水平的社区多样性,大量物种,稀有物种的存在以及在抽样点中细菌的平均分布。这项研究提供了有关纳特隆湖中各种分类单元的首次报告,但建议进行功能性元基因组分析,以进一步研究已鉴定物种的生态和生物技术意义。关键字:宏基因组学; PACBIO测序;细菌多样性;苏打湖;纳特隆湖简介
摘要 可以使用 16S rRNA 荧光原位杂交 (FISH) 研究微生物种群的净增长,即丰度随时间的变化。然而,这种方法不能区分死亡率和细胞分裂率。我们结合稀释培养实验,将基于 FISH 的图像细胞术用于研究两种不同的浮游植物水华中四种细菌类群的净增长、细胞分裂和死亡率:寡营养菌 SAR11 和 SAR86 以及富营养菌门拟杆菌门及其 Aurantivirga 属。细胞体积、核糖体含量和细胞分裂频率 (FDC) 随时间共同变化。在这三者中,FDC 是计算所选类群细胞分裂率的最合适的预测因子。 SAR86 的 FDC 衍生细胞分裂率高达 0.8/天,Aurantivirga 的 FDC 衍生细胞分裂率高达 1.9/天,这与寡养生物和富养生物的预期不同。令人惊讶的是,SAR11 的细胞分裂率也达到了高达 1.9/天的高水平,甚至在浮游植物大量繁殖之前也是如此。对于所有四个分类群,丰度衍生的净增长率(-0.6 到 0.5/天)比细胞分裂率低一个数量级。因此,死亡率与细胞分裂率相当高,表明大约 90% 的细菌产物在 1 天内被回收,没有明显的时间滞后。我们的研究表明,确定特定分类单元的细胞分裂率是对基于组学的工具的补充,并为包括自下而上和自上而下控制在内的单个细菌生长策略提供了前所未有的线索。
厌氧铵氧化(ANAMMOX)生物膜过程已被认为是一种有效的方法,可以保留和积累系统中的Anammox细菌。作为过程性能的主要决定因素,但是在生物膜形成期间,在Anammox伴侣内的微生物相互作用和代谢尚不清楚。因此,这项研究系统地研究了Anammox系统中的微生物依次,代谢和分子调节机制,并与载体的添加相比,并比较了不同尺寸颗粒和生物膜中MI Croornismiss的差异反应。Anammox生物膜反应器的氮去除效率保持稳定,为90.0±3.8%。微生物群落分析表明,蛋白质细菌,氯反llexi和planctomycetota在Anammox颗粒和生物膜中都是主要的门。具体而言,kuenenia念珠菌和未分类的_f_brocadiaceae是主要的Anammox细菌,相对丰度分别为17.9±3.8%和3.6±0.5%。增加载体可以使微生物形成空间异质性分布模式,这有利于增强微生物相互作用并维持ANAMMOX系统的动态平衡。天冬氨酸和谷氨酸是系统中的主要中间体,这对于嘧啶和嘌呤的合成也很重要。在Anammox生物膜中,这些代谢途径的丰度显着上调了30.0±5.1%,反映了微生物的代谢活性较高,这进一步促进了功能细菌的增殖和积累。这项全面的研究强调了携带者在生物膜中Anammox Consortia增强代谢活性和稳定性中的作用,并提供了整体见解,以优化废水处理中的Anammox Biofilm工艺。
早期补充牛奶替代品(MR)中的牛至精油(EO)可能会改善生长,免疫反应,微生物群和乳制品犊牛的代谢组,并在奶牛场和成年期间。将16个女奶牛犊(3天)分为两组(n = 8/组):对照组(无EO)和EO组(在45天内,MR为0.23 mL的EO)。断奶后,小牛被放在饲养场中并随意喂食。称重动物,并在第3天(T0),45(T1)和370(T2)收集血液和粪便样品,以测量生化谱并表征外周血单核细胞(PBMCS;CD4Þ,CD8,CD8Þ,CD14Þ,CD14þ,CD21-,CD21-和WC1-和WC1 and),并及时。EO组在哺乳期(补充EO)期间仅具有更大的平均每日体重增加(P = 0.030)。EO组显示出较高的平均CD14Þ种群(单核细胞)值,浓度较低的Ruminococcaceae UCG-014,粪便核酸杆菌,Blautia和Alloprevotella以及Allistipes和Akkermansia的丰度增加。在血浆中的某些代谢产物的修饰,例如丁酸,3-吲哚丙酸和琥珀酸,尤其是在T1时,与肠道菌群的变化一致。数据表明,早期的EO补充剂仅在哺乳期间提高饲料效率,而微生物群和等离子体代谢组的显着变化。但是,从肠道健康的角度来看,并非所有这些变化都可以认为是可取的。需要进行其他研究以证明EOS是改善小腿生长性能和健康的抗生素的可行自然替代品。
摘要:与高分辨率质谱耦合的液态色谱分析(NTA)提高了与靶向分析技术相比,可以提高理解复杂混合物的分子组成的能力。但是,对未知化合物的检测意味着NTA中的定量是具有挑战性的。本研究提出了一种新的半定量方法,用于有机气溶胶的NTA。使用多个定量标准的平均电离效率来实现未知数,这些标准在与未知分析物相同的保留时间窗口内洗脱。总共110个真实标准构建了25个保留时间窗口,用于定量氧化(CHO)和有机肌(Chon)物种。该方法在生物质燃烧有机气溶胶(BBOA)的提取物上进行了验证,并与具有真实标准的定量进行了比较,并且平均预测误差为1.52倍。此外,从真实的标准定量中估计了70%的浓度(预测误差在0.5到2倍)。与预测性电离效率方法相比,半定量方法还显示出良好的CHO化合物定量一致性,而对于Chon物种,半定量方法的预测误差(1.63)显着低于预测性电离效率方法(14.94)。将CHO和CHON物种相对丰度的衍生衍生而应用于BBOA表明,与半定量方法相比,使用峰面积低估了CHO的相对丰度,并将Chon的相对丰度高于Chon的相对丰度。这些差异可能会导致对复杂样本中源分配的严重误解,从而强调需要解决NTA方法中的电离差异。■简介
上下文。原始黑洞(PBHS)已被提议作为暗物质(DM)的潜在候选者,并近年来引起了显着关注。目标。我们的目标是深入研究PBH对气体性质的明显影响及其在塑造宇宙结构中的潜在作用。特别是,我们旨在分析不断发展的气体特性,同时考虑具有不同单色质量和不同数量的PBHs的存在。通过研究这种积聚产生的反馈效果,我们的最终目标是评估PBHs作为DM候选者的合理性。方法。我们开发了一个半分析模型,该模型在Z〜23。该模型可以对PBHS影响的气体的演变进行全面分析。我们的重点在于温度和氢丰度,并特别强调最接近光环中心的区域。我们探索位于质量窗口内的1、33和100m⊙的PBH质量,其中大量DM可能以PBH的形式存在。我们研究了由这些PBH组成的各种DM级分(F PBH> 10-4)。结果。我们的发现表明,由于气体特性中引起的显着变化,将排除质量为1m⊙的PBH和大于或等于10-2的PBH。同样,质量为33 m⊙和100 m⊙,而分数大于10-3。这些效应在距离光环中心最近的区域特别明显,可能导致晕空间内的星系延迟形成。
前糖尿病是一种与肠道mi-Crobiome组成相关的代谢疾病,尽管机制仍然存在。我们搜索了142名IFG和1,105名来自英国成人双胞胎登记室(Twinsuk)的1,105名健康的知识分(Twinsuk)中的142名IFG和1,105名健康的Indi-Viduals(Twinsuk)中的142名IFG和1,105名健康的知识分,搜索了肠道微生物组功能的读数,与肠道微生物组功能的读数(IFG)有关。,我们使用了奥格斯堡(KORA)队列(318个IFG个人,689个健康个体)的合作健康研究来复制我们的发现。我们将八个IFG-正相关的代谢产物(1-甲基氧烷,烟酸,葡萄糖醛酸,尿苷,胆固醇,胆固醇,丝氨酸,咖啡因和原生化IX)组合为IFG-亚代谢特评分,与较高的赔率(或3. ORS)相关的IFG(ORS)(IFG)(IFG)(IFG)(IFG)(IFG)(IFG)(IFG(IFG))(ifg(OR)(IFG))(ifg(OR))(ifg(OR)) 3.02 - 5.02],p <0.0001,kora:OR 1.3 [95%CI 1.16 - 1.52],p <0.0001)和入射2型糖尿病(T2D; Twinsuk:危险比4 [95%CI 1.97 - 8],p = 0.0002)。尽管这些是宿主产生的含有的tabolites,但我们发现肠道微生物组与它们的粪便水平有很强的相关性(曲线下的面积> 70%)。大量的粪便脂核酸,dorea fomicigenerans,ruminococcus torques和dorea sp。af24-7lb与IFG呈正相关,这种关联是由1-甲基黄嘌呤和烟酸酯部分介导的(方差为平均14.4%[SD 5.1],p <0.05)。我们的结果表明,肠道微生物组不仅通过产生微生物代谢物,而且还通过影响肠道吸收/排泄宿主产生的代谢物和
摘要:这项研究的目的是研究散装剂对堆肥厨房废物的成熟和气态排放的影响。组成实验是由选定的核心细菌剂和通用细菌剂进行20天的。结果表明,核心微生物剂的添加有效地控制了典型的气味产生化合物的发射。核心和通用细菌剂的添加大幅降低了NH 3排放量94%和74%,并使H 2 S排放量降低了78%,27%。堆肥过程中核心微生物剂的施用将峰值温度升高至65℃,并且在有效的温度演化方面(连续8天> 55℃)。加入了核心微生物剂的初始值,有机物降解降低了65%,而对于其他治疗方法,减少量很小。将核心微生物剂添加到厨房废物中,产生了成熟的堆肥,其发芽指数较高(GI)为112%,而其他治疗方法并未完全成熟,GI的GI <70%。微生物分析表明,堆肥的核心微生物剂增加了魏森氏菌,Ignatzschineria和菌孢子的相对丰度。网络和冗余分析(RDA)表明,核心微生物剂增强了细菌与八个指标之间的关系(p <0.01),从而改善了堆肥过程中化合物的生物转化。总体而言,这些结果表明,仔细选择适当的接种微生物对于改善厨房废物的生物转化和营养含量堆肥至关重要。
