参数下转换产生的光子对提供了一种校准单光子探测器的绝对方法 [1–14]。由于光子是成对产生的,因此检测到一个光子肯定预示着另一个光子的存在。为了测量检测效率,放置触发检测系统来拦截部分下转换光。然后安排被测探测器 (DUT) 收集与触发探测器看到的光子相关的所有光子(通常更多)。在理想情况下,DUT 通道检测效率是给定时间间隔内巧合事件数与触发检测事件数之比。 (这里所说的理想情况是指,除了双光子源之外,没有任何竞争机制导致探测器触发;而巧合是指两个探测器由于一对光子而触发。)如果我们分别用 η DUT 和 η trig 来指定 DUT 和触发通道的收集效率,则触发计数的总数为
通常允许客户从 PCB 上移除与信号调节相关的组件,以释放空间并降低与这些组件相关的成本(例如,采购、库存、组装)。真正的温度补偿数字 I 2 C 或 SPI 输出通常可以消除由于 PCB 上有多个信号调节组件而可能出现的问题,并简化与微处理器的集成,从而无需客户实施复杂的信号调节
h e是一个非常关注的根源,并且已经付出了巨大的努力来减少它。除此之外,分享假新闻和其他错误信息会使问题恶化。当前方法的主要方法是特定于内容的,例如标记内容的算法降级。尽管发现这些特定内容的方法是有效的(Martel&Rand,2023),但它们不足以与社交媒体上发布的大量内容保持同步。例如,在2022年,每分钟在Meta/Facebook上发布了约170万件内容(Domo,2023)。在这个规模上,至少可以说,事实检查变得高度挑战!
在建立物理现象或过程的模型时,科学家不可避免地要在模型的简单性(定性-定量变量集)和准确性之间做出妥协。数百年来,定律的直观简单性证明了提出它的科学家的物理思维的天才和深度。目前,对周围世界和新发现的物理现象有更深的物理理解的渴望促使研究人员增加模型中考虑的变量数量。这个方向导致选择不准确甚至错误模型的可能性增加。本研究描述了一种估计测量精度极限的方法,其中考虑了模型构建阶段在存储、传输、处理和观察者使用信息方面的信息。由于模型中存储的信息量有限,这个限制允许您选择最佳变量数以最好地再现观察对象,并计算测量理论中模型与所研究现象之间的阈值差异的精确值。我们考虑两个例子:声速的测量和物理常数的测量。
退相干和门误差严重限制了最先进的量子计算机的能力。这项工作引入了一种量子化学参考状态误差缓解 (REM) 策略,该策略可以直接在当前和近期的设备上实现。REM 可以与现有的缓解程序一起使用,同时只需要最少的后处理,并且只需要一次或不需要额外的测量。该方法与底层量子力学假设无关,并且专为变分量子特征值求解器 (VQE) 而设计。在超导量子硬件上证明了小分子 (H 2、HeH + 和 LiH) 基态能量计算精度提高了两个数量级。深度超过 1000 个两量子比特门的噪声电路的模拟用于论证该方法的可扩展性。
好处 将校准工作外包给 Endress+Hauser 可以让现场工程师腾出时间处理故障和计划维护。“这减轻了我的压力!”Ben Pine 笑着说。“每个月都有同一个人来现场,这确实是一个好处,因为他了解现场,了解我们的员工,遵循我们的流程,不需要他亲自指导。我知道一切都会按时校准,不会有任何障碍或问题。” 该软件有助于确保遵守所有标准操作程序 (SOP),并且校准记录易于访问。“当我们进行审计时,我可以确信我们会遵守规定,”Ben Pine 说。“但最大的好处是人。校准工程师说到做到,我们的合同经理有定期的接触点,确保我们满意。这种关系是任何合同的基础。我通常不会推荐一家公司,但我会推荐 Endress+Hauser,而且已经推荐过了。”
UDC 621.317.727.1 https://doi.org/10.20998/2074-272X.2025.1.09 YO Haran,YO Trotsenko,OR Protsenko,MM Dixit 寄生电容对高压分压器刻度转换精度的影响目的。这项工作的目的是确定寄生电容对高压分压器刻度转换精度的影响。分析减少这种影响的可能性是高压测量的一个紧迫问题,特别是在输入电压的高频范围内。方法。在 100 Hz 至 1 MHz 范围内的正弦交流电条件下,在 QUCS 电路模拟器软件中对分压器等效电路进行了数学建模,考虑了寄生电容和电感。利用FEMM软件,采用有限元法模拟分压器高压臂采用电容分级绝缘模块中电容电流的密度分布。结果。计算结果表明,寄生电容电流百分比随屏蔽盘外半径与它们之间距离的比值而呈指数下降。但即使屏蔽盘外半径为3m左右,电容电流仍然占分压器测量电路中流动总电流的1%左右。建议不增加外半径,而是在屏蔽盘之间采用高压电容分级绝缘。结果发现,当寄生电容值变化时,大范围电压变换的误差稳定,并建议用同类型的高压模块来制造分压器的高压臂。独创性。获得了分压器尺度变换精度对其高压臂结构元件几何参数比值的依赖关系的建模结果。提出的解决方案是改变分压器高压臂的设计,这显著降低了其尺度变换误差对接地表面上结构元件寄生电容的显著变化的依赖性。实用价值。分压器高压臂特性的数学建模结果使得可以设计相同类型的高压模块用于批量生产,以便现场组装任何标称电压的宽带分压器,从而有可能集成到智能电网系统中。参考文献23,表1,图8。关键词:高压分压器、寄生电容、尺度变换精度。 В роботі розглянуто вплив будови високовольтного плеча подільника напруги на його характеристики.为了确保减少结构元件的寄生电容对有源部分的集总元件和外部物体的影响,已经研究了屏蔽集总元件的方法。通过数学建模确定了高压臂结构元件几何参数配比对高频区电压缩放误差的影响。根据建模结果,选择了利用多层电容式绝缘对分压器有源部分的集总元件进行屏蔽的方法,保证了宽频率范围内缩放电压转换误差的稳定性。高压臂结构的拟议变化使我们能够切换到分压器的模块化结构并进行其批量生产。圣经。 23、表。 1,图。 8. 关键词:高压分压器,寄生电容,刻度转换精度。问题定义。高压分压器是微电子和高压测试和研究实验室中常见的大型电压转换器。然而,这些电气设备在电力工业中,特别是在高压电气设备中没有得到广泛的应用,因为它们的结构不允许摆脱许多缺点,这些缺点使它们作为宽带大型高压转换器集成到模拟或数字变电站中变得复杂[1]。例如,在实验室条件下,对于高压分压器,在很宽的频率范围内获得了0.1量级的大范围电压转换误差,但是这种分压器结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体会严重影响其高压臂的寄生电容。此类物体上的寄生电容会显著影响高频下大规模电压转换的精度。此外,高压臂的集总元件的复电阻的温度依赖性会影响分压器的比例因子。此外,根据客户的特定任务生产高压分压器使建立此类设备的统一批量生产系统变得复杂。这限制了显著提高电能质量指标的测定、高压设施过程的安全性和自动化程度的可能性。由于这些和其他原因,高压分压器尚未被用作大规模高压根据建模结果,选择了利用多层电容式绝缘对分压器有源部分的集总元件进行屏蔽的方法,保证了宽频率范围内缩放电压转换误差的稳定性。高压臂结构的拟议变化使我们能够切换到分压器的模块化结构并进行其批量生产。圣经。 23、表。 1,图。 8. 关键词:高压分压器,寄生电容,刻度转换精度。问题定义。高压分压器是微电子和高压测试和研究实验室中常见的大型电压转换器。然而,这些电气设备在电力工业中,特别是在高压电气设备中没有得到广泛的应用,因为它们的结构不允许摆脱许多缺点,这些缺点使它们作为宽带大型高压转换器集成到模拟或数字变电站中变得复杂[1]。例如,在实验室条件下,对于高压分压器,在很宽的频率范围内获得了0.1量级的大范围电压转换误差,但是这种分压器结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体会严重影响其高压臂的寄生电容。此类物体上的寄生电容会显著影响高频下大规模电压转换的精度。此外,高压臂的集总元件的复电阻的温度依赖性会影响分压器的比例因子。此外,根据客户的特定任务生产高压分压器使建立此类设备的统一批量生产系统变得复杂。这限制了显著提高电能质量指标的测定、高压设施过程的安全性和自动化程度的可能性。由于这些和其他原因,高压分压器尚未被用作大规模高压根据建模结果,选择了利用多层电容式绝缘对分压器有源部分的集总元件进行屏蔽的方法,保证了宽频率范围内缩放电压转换误差的稳定性。高压臂结构的拟议变化使我们能够切换到分压器的模块化结构并进行其批量生产。圣经。 23、表。 1,图。 8. 关键词:高压分压器,寄生电容,刻度转换精度。问题定义。高压分压器是微电子和高压测试和研究实验室中常见的大型电压转换器。然而,这些电气设备在电力工业中,特别是在高压电气设备中没有得到广泛的应用,因为它们的结构不允许摆脱许多缺点,这些缺点使它们作为宽带大型高压转换器集成到模拟或数字变电站中变得复杂[1]。例如,在实验室条件下,对于高压分压器,在很宽的频率范围内获得了0.1量级的大范围电压转换误差,但是这种分压器结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体会严重影响其高压臂的寄生电容。此类物体上的寄生电容会显著影响高频下大规模电压转换的精度。此外,高压臂的集总元件的复电阻的温度依赖性会影响分压器的比例因子。此外,根据客户的特定任务生产高压分压器使建立此类设备的统一批量生产系统变得复杂。这限制了显著提高电能质量指标的测定、高压设施过程的安全性和自动化程度的可能性。由于这些和其他原因,高压分压器尚未被用作大规模高压这些电气设备并未广泛应用于电力工业,特别是高压电气设备,因为它们的结构存在许多缺点,使得它们难以作为宽带大规模高压转换器集成到模拟或数字变电站中 [1]。例如,在实验室条件下,高压分压器在很宽频率范围内的大规模电压转换误差约为 0.1,但这种分压器的结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体,会显著影响其高压臂的寄生电容。这些物体上的寄生电容会显著影响高频大规模电压转换的精度。此外,高压臂集总元件复电阻的温度依赖性会影响分压器的比例因子。此外,为客户的特定任务生产高压分配器使建立这种设备的统一批量生产系统变得复杂。这限制了显著改善电能质量指标的确定、高压设施的安全性和自动化的可能性。由于这些原因和其他原因,高压分配器尚未被用作大规模高压设备。这些电气设备并未广泛应用于电力工业,特别是高压电气设备,因为它们的结构存在许多缺点,使得它们难以作为宽带大规模高压转换器集成到模拟或数字变电站中 [1]。例如,在实验室条件下,高压分压器在很宽频率范围内的大规模电压转换误差约为 0.1,但这种分压器的结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体,会显著影响其高压臂的寄生电容。这些物体上的寄生电容会显著影响高频大规模电压转换的精度。此外,高压臂集总元件复电阻的温度依赖性会影响分压器的比例因子。此外,为客户的特定任务生产高压分配器使建立这种设备的统一批量生产系统变得复杂。这限制了显著改善电能质量指标的确定、高压设施的安全性和自动化的可能性。由于这些原因和其他原因,高压分配器尚未被用作大规模高压设备。高压分压器尚未被用作大规模高压高压分压器尚未被用作大规模高压
通常允许客户从 PCB 上移除与信号调节相关的组件,以释放空间并降低与这些组件相关的成本(例如,采购、库存、组装)。真正的温度补偿数字 I 2 C 或 SPI 输出通常可以消除由于在 PCB 上安装多个信号调节组件而可能出现的问题,并简化与微处理器的集成,从而消除了客户实施的复杂信号调节的需要
通常允许客户从 PCB 上移除与信号调节相关的组件,以释放空间并降低与这些组件相关的成本(例如,采购、库存、组装)。真正的温度补偿数字 I 2 C 或 SPI 输出通常可以消除由于在 PCB 上安装多个信号调节组件而可能出现的问题,并简化与微处理器的集成,从而消除了客户实施的复杂信号调节的需要