条件是专门为本研究创建的。风速设置为 80 kt(150 公里/小时),相当于蒲福风级 17° 风暴强度时的风速。飓风期间也可以发现类似的风速。除了风力变化外,ILS 的另一个困难是,当超过 1,500 英尺时,风向会发生变化。风引起的湍流强度设置为最高水平。图 8 显示了 a) 在 Google Earth 中制作的 3D 路径着陆进近,以及 b) 使用 FS Instructor 创建的显示下滑道以及应用的理想 GP 线的图表。可以看出,ILS 未能引导飞机进入跑道。在进近开始时,飞机偏离了理想下滑道。由 ILS 引导的飞机在距离跑道外缘约 15 米处着陆。在这种情况下着陆时,飞行员有责任中断进近。如果在达到决策高度时发生这种情况,飞机将不会位于跑道轴线上。
引用:Elie Nasr 等人。“全口四颗牙齿治疗概念中数字种植体印模与传统种植体印模的准确性”。Acta Scientific Dental Sciences 5.11 (2021): 98-106。
最常用的潜艇探测和定位手段之一是定向频率分析和记录 (DIFAR) 声纳浮标系统。这是一种被动系统,通过接收潜艇发射的声学信号、探测和定位潜艇来工作。近年来,DIFAR 声纳浮标还被用于追踪鲸鱼的迁徙并记录它们发出的声音( McDonald,2004;Miller,2012;Greene Jr. 等,2004)。一般而言,DIFAR 声纳浮标配备有由五个水听器组成的水声天线,这些水听器由交叉的梯度水听器对和一个附加的中央水听器组成(Mallet,1975;Salamon,2004)。类似的没有中央水听器的天线系统也是已知的(Stover,1969;Salamon 等人,2000)。在本文中,作者将证明这两种解决方案都是正确的,并且在很宽的信噪比范围内提供类似的方位精度水平。与任何被动或主动声学系统一样,方位精度受噪声影响,其中噪声在声纳浮标的工作频率范围内(10 Hz 至 3 kHz)特别高(Salamon,2004;2006;Marszal 等人,2005)。了解
激光还有一种不太为人所知的应用是卫星激光测距。在本月的专栏中,来自马里兰州格林贝尔特 NASA 戈达德太空飞行中心 (GSFC) 陆地物理实验室 (LTP) 的 John Degnan 和 Erri cos Pavlis 向我们介绍了卫星激光测距,并描述了利用该技术追踪两颗 Navstar GPS 卫星的努力。Degnan 博士是 LTP 的空间大地测量和测高项目办公室负责人。他自 1964 年起就受雇于 GSFC,当时作为德雷塞尔大学的实习生,他参加了对 Beacon Explorer B 卫星的首次激光测距实验。Pavlis 博士是 LTP 的高级大地测量学家,隶属于马里兰大学天文系。他的研究兴趣包括卫星轨道动力学和空间大地测量数据分析。
在GPS正常工作条件下,MLS系统可以达到厘米级的定位精度。然而,在无GPS环境下,由于MLS的观测模式误差和视轴对准误差无法通过GPS信号进行标定或修正,定位精度可能降低到分米甚至米级。针对这一研究空白,本文提出一种新技术,适当结合稳健加权最小二乘(RWTLS)和全信息最大似然最优估计(FIMLOE),提高无GPS环境下MLS系统的定位精度。首先,建立MLS系统的坐标转换关系和观测参数向量。其次,利用RWTLS算法对三维点观测模型进行修正;然后利用FIMLOE标定激光扫描仪框架与IMU框架之间的不确定度传播参数向量和视轴对准误差。最后,在室内场景中进行实验研究,以评估所提方法的有效性。实验结果表明,所提方法能够显著提高 MLS 系统在 GPS 拒绝环境中的定位精度。
摘要:飞行高度是校正机载测量期间测量的陆地放射性核素产生的伽马信号的基本参数。无人机辐射测量的前沿需要轻便而精确的高度计,飞行高度距离地面约 10 米。我们为飞机配备了七个高度传感器(三个低成本 GNSS 接收器、一个惯性测量单元、一个雷达高度计和两个气压计),并分析了在 (35–2194) 米高度范围内在海上收集的约 3 小时的数据。在低海拔(H < 70 m)下,雷达和气压高度计提供最佳性能,而 GNSS 数据仅用于气压计校准,因为它们受到来自海上的多径引起的大噪声的影响。50 m 高度的 ~1 m 中位标准偏差影响地面放射性同位素丰度的估计,不确定度小于 1.3%。GNSS 双差分后处理显著提高了 H > 80 m 的数据质量,包括高度中位标准偏差以及重建和测量的 GPS 天线距离之间的一致性。在 100 m 高度飞行时,由于飞行高度的不确定性,地面总活动的估计不确定性约为 2%。
近年来,用于采矿业 3D 地形测绘的轻型无人机 (UAV) 得到了显著发展。特别是在露天矿等复杂地形中,海拔起伏剧烈,与传统方法相比,基于无人机的测绘已证明具有经济性和更高的安全性。然而,无人机测绘复杂地形的最重要因素之一是飞行高度,由于生成的 DEM 的安全性和准确性,需要认真考虑飞行高度。本文旨在评估飞行高度对露天矿生成的 DEM 准确性的影响。为此,研究区域选在越南北部一个地形复杂的采石场。调查采用 50 m、100 m、150 m、200 m 和 250 m 五个飞行高度进行。为了评估生成的 DEM 的精度,使用了 10 个地面控制点 (GCP) 和 385 个检查点,这些检查点通过 GNSS/RTK 和全站仪方法进行了测量。通过 X、Y、Z、XY 和 XYZ 分量的均方根误差 (RMSE) 来评估 DEM 的精度。结果表明,在飞行高度小于 150 m 时生成的 DEM 模型具有较高的精度。当飞行高度从 50 m 增加到 250 m 时,10 个 GCP 的垂直 (Z) 方向的 RMSE 从 1.8 cm 增加到 6.2 cm,水平 (XY) 方向的 RMSE 从 2.6 cm 增加到 6.3 cm,而 385 个检查点的垂直 (Z) 方向的 RMSE 从 0.05 m 逐渐增加到 0.15 m。
摘要 — 变分量子算法 (VQA) 依赖于参数化单元电路针对目标函数的迭代优化。由于量子机器噪声大且资源昂贵,因此必须适当选择 VQA 的假设,并使其初始参数尽可能接近最优值,因为这将改善并加速算法在量子设备上执行的精确收敛。这项工作通过提出 CAFQA(一种用于量子精度的 Clifford 假设)来解决寻找初始假设参数的问题。CAFQA 假设是一种仅使用 Clifford 门构建的硬件高效电路。在此假设中,通过经典模拟在 Clifford 参数空间中进行有效搜索来选择可调门的初始参数,从而产生合适的稳定器状态。结果表明,产生的稳定器状态始终等于或优于传统的经典初始化方法(例如 Hartree-Fock),即找到合适的计算基态,并且通常在量子设备上执行和探索之前就产生高精度估计。此外,该技术适用于经典计算,因为 a) 仅 Clifford 量子电路可以在多项式时间内进行经典精确模拟,以及 b) 离散 Clifford 空间虽然量子比特数量呈指数级增长,但可以通过贝叶斯优化进行有效搜索。对于变分量子特征求解器 (VQE) 任务(即估计多达 20 个量子比特的分子系统的基态能量),CAFQA 的 Clifford Ansatz 实现了接近 99% 的平均准确度,并且能够恢复高达 99.99% 的 Hartree-Fock 初始化分子相关能量。值得注意的是,该方法的可扩展性允许对具有挑战性的铬二聚体 (Cr 2 ) 进行初步的基态能量估计,其精度高于 Hartree-Fock 所达到的精度。CAFQA 还在优化任务上进行了评估,特别是高达 18 个量子比特的 MAXCUT 问题。借助 CAFQA 的高精度初始化,VQA 的收敛速度加快了 2.5 倍。总之,这项工作表明稳定器状态是变分算法的高精度假设初始化。此外,它突出了量子启发式经典技术作为 NISQ 时代及以后 VQA 的替代方案和支持方法的潜力。
结直肠癌 (CRC) 是全球第三大常见癌症,是医疗保健领域的重大挑战 [1]。有力证据支持筛查在降低 CRC 发病率和死亡率方面的有效性 [2]。尽管结肠镜检查是当前的筛查标准之一,但由于成本高、工作量大和患者依从性低(尤其是在资源有限的国家)而阻碍了其推广 [3-5]。粪便潜血检测作为一种非侵入性替代方法,存在某些缺点,特别是其对检测晚期腺瘤的灵敏度低(低至 7%)和对检测 CRC 的灵敏度中等(50% - 81%)[6, 7]。此外,在基于愈创木脂的粪便潜血检测中,由于在食物和上消化道血液中发现非人类血红素,因此假阳性率很高 [7]。
摘要 — 要使运动想象脑机接口 (MI-BCI) 技术可用且在实验室外实际使用,主要挑战在于提供在分类准确性方面高效且易于安装的 EEG 系统,例如使用最少数量的干电极。我们假设最佳信号处理方法可能取决于所使用的(干)电极的数量。因此,我们首次比较了与不同干电极设置相关的分类准确性,即从 8 到 32 通道的 7 种配置,以及各种信号处理方法,即 (1) 正则化公共空间模式 (rCSP) + 线性判别分析,(2) rCSP + 支持向量机 (SVM),(3) 到黎曼均值的最小距离和 (4) 黎曼切线空间中的 SVM。此离线比较针对 10 位参与者(每人一个会话)的数据进行。我们的结果表明,无论采用哪种方法,MI-BCI 性能在 8 和 12 个通道时都会显著下降(p < 0.01)。此外,方法 3 的性能最低(p < 0.05)。最后,博士后分析表明,方法 1 和 2 在电极数量最多(28 和 32)时性能最佳。对于方法 4,使用 20 和 24 个通道可获得最佳性能,这似乎是最佳组合(p < 0.05)。这些结果表明,根据所用电极数量选择信号处理管道非常重要。