细胞外基质蛋白水解在大脑发育过程中保持突触可塑性Haruna Nakajo 1,Ran Cao 1,上cao 1,uspriya A. Mula 1,Justin McKetney 2,3,4,Nicholas J. Silva 1,Muskaan Shah 1,Muskaan Shah 1,Indigo V. L. Indigo V. L. Rose 5,6,Martin Kampmann 5 awane l.2 l.7 swane l.7 6,8,9,10 Anna V.Molofsky 1,10 1精神病学和行为科学系/威尔神经科学研究所,加利福尼亚大学,旧金山,旧金山,旧金山,加利福尼亚州94158,美国。2 Gladstone数据科学与生物技术研究所,J。DavidGladstone Institutes,旧金山,94158,美国加利福尼亚州,美国3定量生物科学研究所(QBI),加利福尼亚旧金山,旧金山,旧金山大学,加利福尼亚州94158,美国加利福尼亚州94158,美国44158 94158,加利福尼亚,美国5神经退行性疾病研究所,威尔神经科学研究所,加利福尼亚大学,旧金山,旧金山,旧金山,加利福尼亚州94158,美国。6加州大学旧金山分校的Neuroscience研究生课程,美国加利福尼亚州94158,美国。 7加利福尼亚大学旧金山大学生物化学与生物物理学系,旧金山,加利福尼亚州94158,美国。 8加州大学旧金山分校的解剖系,美国CA94158,美国。 9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。 10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。 摘要维持动态神经元突触库对于大脑发育至关重要。 小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。6加州大学旧金山分校的Neuroscience研究生课程,美国加利福尼亚州94158,美国。7加利福尼亚大学旧金山大学生物化学与生物物理学系,旧金山,加利福尼亚州94158,美国。 8加州大学旧金山分校的解剖系,美国CA94158,美国。 9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。 10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。 摘要维持动态神经元突触库对于大脑发育至关重要。 小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。7加利福尼亚大学旧金山大学生物化学与生物物理学系,旧金山,加利福尼亚州94158,美国。8加州大学旧金山分校的解剖系,美国CA94158,美国。 9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。 10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。 摘要维持动态神经元突触库对于大脑发育至关重要。 小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。8加州大学旧金山分校的解剖系,美国CA94158,美国。9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。摘要维持动态神经元突触库对于大脑发育至关重要。小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。细胞外基质(ECM)通过仍在定义并主要在成年期进行研究的机制来调节突触可塑性。使用斑马鱼后脑中兴奋性突触的实时成像,我们观察到短期(动态)和寿命更长(稳定)突触的双峰分布。通过消化或Brevican缺失破坏ECM的动态动态而不是稳定的突触,并导致突触密度降低。相反,基质金属蛋白酶14(MMP14)的丧失导致Brevican的积累并增加了稳定的突触池,从而导致突触密度增加。在运动学习测定中依赖经验的突触可塑性所必需的MMP14和Brevican。通过数学建模补充,这些数据定义了ECM重塑在保持大脑发育过程中突触的动态子集中的重要作用。引言神经元突触数量在大脑发育过程中明显增加,并经历了长时间的经验依赖性精致,以塑造成人大脑功能1。在人类中,前额叶皮质突触在整个幼儿期间增加,随后在青春期进行修剪2,3,突触可塑性的改变与神经发育疾病有关4,5。细胞外基质(ECM)是糖和糖蛋白的晶格,填充了大脑的细胞外空间,最多占脑体积6的20%。ECM也是突触可塑性的关键调节剂7,8。这种观点的许多证据来自于成年后酶消化ECM的研究。这些发现ECM消化可以在9-11的皮质回路中重新打开可塑性,损害学习和记忆12,13,并促进
使用高通量透析或血液透露方式去除。补体激活被认为是生物兼容性的关键事件。但是,它是透析疗程结束时的早期和瞬态事件,过敏毒素水平归一化。补体激活通常被认为会触发白细胞刺激,从而导致促炎介质的分泌和氧化爆发。除了是消除物理和酶微生物所涉及的先天免疫反应外,中性粒细胞外陷阱(NETS)的形成(Netosis)最近被确定为与炎症过程相关的广泛病理学中的主要有害成分。网络是由通过NADPH氧化酶产生的活性氧诱导的中性粒细胞脱粒而产生的,由丝氨酸蛋白酶,弹性蛋白酶,杀菌蛋白和骨髓过氧化物酶(MPO)的改良染色质组成,产生低氯氯氯化物含量。目前,Netosis作为透析中生物兼容性的敏感和综合标记的研究仍然很糟糕。文献中只能发现稀缺数据。氧化爆发和NADPH氧化酶激活是生物兼容现象中的知名事件。净副产品(例如弹性酶,MPO和循环DNA)在透析患者中更具体地增加了透析患者的增加,并被确定为预后不良的预测指标。由于网和MPO可以通过内皮吸收,因此网被认为是间歇性生物兼容现象的血管记忆。在这篇有效的假设文章中,我们总结了拼图片段,显示了血液透析过程中净形成的参与,并假设Netosis可能是一种疾病修饰剂,并可能有助于与透析生物兼容性相关的合并负担。
可以使用细胞外电位(例如局部场上的电池或电脑电图)来测量脑组织中的抽象电现象。这些信号的解释取决于细胞外培养基的电结构和特性,但这些电特性的测量仍在争论中。一些测量指向细胞外培养基纯电阻的模型,因此诸如电导率和介电常数之类的参数应独立于频率。其他测量值指向这些参数的明显频率依赖性,其缩放定律与电容或扩散效应一致。但是,这些实验对应于不同的预先处理,目前尚不清楚如何正确比较它们。在这里,我们第一次提供了使用在各种制剂中相同的设置,从原代细胞培养物到急性脑切片的阻抗测量(在1-10 kHz频率范围内),以及与无生物学物质的人工脑脊髓流动的相似测量的比较。测量结果表明,当电流流过细胞膜时,细胞内电极和细胞外电极之间的宏观阻抗的频率依赖性显着,并且不能被电阻介质的模型捕获。将均值字段模型拟合到数据上表明,这种频率依赖性可以通过与膜周围的debye层相关的离子扩散来解释。我们得出的结论是,神经元膜及其离子环境会引起强大的电阻率偏差,应考虑到正确解释神经元产生的细胞外电位。
细菌细胞外囊泡(EV)是脂质班,在毒力,种间竞争以及诱导宿主免疫反应中起着作用。尽管它们主要是在动物 - 细菌相互作用中进行了研究的,但有关植物细菌电动汽车的知识仍然有限。最近的发现表明,羟基苯甲酸等各种生物因素可以调节电动汽车的产生。羟基霉素(例如阿魏酸)是在植物环境中大量释放的木质素成分,它们会影响许多植物杆菌的生态。azospirillum sp。b510,一种植物素细菌,诱导植物中羟基霉素衍生物的积累,并可以将其代谢为碳源。我们假设在氮杂硫酸属的环境中,阿魏酸的存在。b510将在规模,数量和货物方面影响其电动汽车生产。相反,我们还提出,该植物杆菌的电动汽车会影响植物代谢产物和防御基因表达。我们的结果表明,阿魏酸(模仿植物环境)会影响Azospirillum sp。释放的电动汽车的含量。b510和细菌电动汽车还根据其货物在全身性水平上影响植物生理。这项研究提供了第一个证据,证明了细菌电动汽车对植物的全球作用,并突出了电动汽车介导的植物 - 细菌相互作用的动力学。
抽象的血浆细胞外囊泡(EV)是细胞衍生的脂质颗粒,据报道在败血症的发病机理中起作用。这项研究旨在鉴定化粪池患者中的EV货物蛋白,并探索其与关键的脓毒症病理生理学的关联。基于定量蛋白质组学分析,对血浆EV进行了串联质量标签(TMT)。与健康对照组相比,我们确定了败血症患者中522个差异表达的(DE)EV蛋白(n = 15)(n = 10)。对DE蛋白的KEGG分析揭示了与败血症相关的多种功能途径,例如补体/凝结,血小板活化,吞噬体,炎症和中性粒细胞外陷阱形成。加权基因共表达网络分析1,642 eV蛋白鉴定出了9个独特的蛋白质模块,其中一些模块与脓毒症诊断和多种血浆标记物高度相关,包括器官损伤,炎症,凝血病和内皮激活。细胞类型特异性富集分析揭示了EV的细胞起源,包括免疫和上皮细胞,神经元和神经胶质细胞。因此,当前的研究发现了与败血症中关键病理生理反应密切相关的血浆EV中的复杂蛋白质组学特征。这些发现支持EV货物蛋白在患者的免疫反应,凝结和内皮激活中的重要性,并为等离子体发病机理中血浆EV的未来机械研究奠定了基础。关键字败血症,细胞外囊泡(EV),质谱法,蛋白质组学,串联质量标签(TMT)
b'由于 TGF- 信号在免疫稳态中的作用,其紊乱是炎症性疾病的根本原因。许多慢性炎症性疾病都以纤维化为特征,纤维化与细胞外基质的过度沉积同时发生,导致受影响器官的正常功能丧失。TGF- 家族还通过激活成纤维细胞向肌成纤维细胞表型转变,在纤维化的启动和进展中发挥着重要作用。在肿瘤发生的早期阶段,TGF- 可能通过诱导肿瘤前细胞的细胞停滞和凋亡而充当肿瘤抑制因子。然而,在后期,当癌细胞获得致癌突变,从而脱离 TGF- 肿瘤抑制因子功能时,它会通过刺激肿瘤细胞进行上皮\xe2\x80\x93间质转化 (EMT) 而成为肿瘤促进剂,从而增加迁移和侵袭。 TGF- 在肿瘤微环境内的免疫抑制中也发挥着核心作用,最近的研究揭示了它在肿瘤免疫逃避和癌症免疫治疗反应不佳中的作用。'
图1:A。本研究中使用的颗粒和实验方案的特征。从上到下:VLP HIV,像人免疫缺陷病毒的粒子一样; MLV,鼠白血病病毒; HBV,肝素B病毒; AAV,Adeno相关病毒(血清型8和9);电动汽车,细胞外囊泡。需要荧光标记颗粒:可以通过基因组修饰(HIV和MLV的GFP标记)或直接通过在样品中添加荧光团(AAV和HBV的Yoyo-1,EVS的DIO)来实现。潜在的细胞DNA在VLP HIV和EV中以红色表示,MLV中的粉红色病毒RNA和HBV和AAV中的紫色病毒DNA表示。然后将样品稀释。大小由NTA确定HIV,MLV和EVS,以及AAV 37和HBV 38的冷冻EM重建。B.零模式波导设置,用于通过纳米孔转移的颗粒。顺式腔室包含荧光标记的颗粒。在施加压力时,颗粒在跨室中的孔中推动,并在孔末端越过evanevencent的田地区域时照亮。一旦他们离开了毛孔,他们就没有专心和漂白。C.事件的荧光演变是时间和粒子出口快照的函数。归一化强度表示为AAV时间的函数(紫罗兰和红点,平均在n = 50事件上)。通过最大强度分配强度获得归一化强度。时间在事件开始时被重新缩放至零,红点与事件发生前的强度相对应。指数衰减以蓝色表示。孔径400 nm,施加压力为0.5 mbar。帧速率:112 fps。插图:图像尺寸= 10 µm。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 24 日发布。;https://doi.org/10.1101/2025.01.22.634193 doi:bioRxiv preprint
图1。(a)Berghia stephanieae和(b)Hermissenda opalescens中的线虫细胞中的特殊吞噬作用(即,在(a)berghia berghia opalescens中。(c)从Goodheart等人修改的广义CNIDOSAC示意图。2018 [14](根据CC by 4.0 Creative Commons许可)突出了Cnidosac的主要功能。(插图)线虫细胞(n)是由cnidosac(CS)内的cnidophages吞噬的。缩写:C,Cerata; CI,Cilia Tufts; CP,Cnidophage,DG,消化腺; E,Cnidosac的入口; EP,上皮; ex,从cnidosac退出;他,血细胞; m,肌肉; n,黑头囊。
致谢该项目是通过大学在纽约州布法罗大学的支持和罗斯威尔公园综合癌症中心流量和图像细胞仪共享资源而实现的。如果没有Maggie Vogel-Cryan,LVT和Beth Palka的出色技术支持,这些研究就无法完成。我们承认将生物者用于人物设计。
