亲爱的,感谢您于 2022 年 2 月 25 日向国防部 (MOD) 发送电子邮件,请求提供以下信息:“我希望提交 FOI 请求。我有四个问题,以粗体突出显示:1.在处理退伍军人的养老金和津贴索赔/重新考虑/审查/上诉时,英国退伍军人协会使用什么计算机程序/系统来管理流程?2.SPVA 于 2014 年与国防商业服务合并。英国退伍军人协会是否保留 SPVA 部门/单位/团队?3.有多少英国退伍军人协会员工和团队使用包含字母 SPVA 的电子邮件名称/发件人名称?4.法庭高级主席 Rt Hon Sir Keith Lindblom 于 2021 年 9 月发布了他的 2021 年度报告。他的报告在第 51 页的“战争养老金和武装部队赔偿分庭”下指出:“分庭现在有自己的司法委员会,并且受益于对分庭资源需求的更大支持和监督。一个主要且长期存在的问题是,我们的上诉不是直接向分庭提出,而是由上诉人发送给英国退伍军人协会,这是国防部 (MoD) 的一个机构,这完全不能令人满意。去年,双方原则上同意实施直接向分庭提出上诉的程序。尽管国防部承诺努力实施直接上诉程序,但事实上,我们已同意实施直接上诉程序。到 2021 年底之前提交,即使考虑到疫情的中断,进展也令人失望地缓慢。司法部政策部门正在与国防部合作,试图让该项目再次启动,我非常希望能够在明年报告,最终,直接提交已经实现或有望在 2022 年实现”(第 51 页)。a.何时打算启动上诉的“直接提交”?b.国防部预计“直接提交”每年能为国防部节省多少成本?:“我将您的信件视为根据《2000 年信息自由法》(FOIA)提出的信息请求。
The dramatic reduction of carbon emissions is essential to achieve our climate goals.This mission sees UL transform our campus into one which has no net release of carbon dioxide into the atmosphere.To do so, the campus carbon footprint will be eliminated through reduced emissions, carbon sequestration, and carbon offsetting.
抽象背景:大脑活检是至关重要的诊断干预措施,为治疗和预后提供了宝贵的信息,但很大程度上取决于高精度和精度。我们假设,通过使用移动单元的术中CT检查,通过基于神经验证的无框架立体定位和MRI引导的轨迹计划的组合,可以实现无缝集成的方法,得出最佳目标准确性。方法:我们分析了7个立体定向活检轨迹,用于各种深处的位置和不同的患者位置。在刚性固定后,使用计划MRI图像进行自动图像融合,使用移动CT单元进行术中术前扫描,并使用原位进行活检套管进行验证,以验证确定的目标位置。然后,我们评估了径向轨迹误差。结果:术中扫描,手术,MRI和CT图像的计算机化合并以及轨迹计划是可行的,在所有情况下都没有困难且安全。我们在60±12.3 mm的轨迹长度下达到了0.97±0.39 mm的径向轨迹偏差(平均值±标准偏差)。不需要因目标不准确而重新定位活检套管。结论:使用移动CT单元与无框神经验证指导的立体定位和基于术前MRI的轨迹计划结合使用的术中验证是可行的,安全且高度准确的。关键词:立体定向神经外科,图像指导,术中CT,脑活检该设置实现了深度脑损伤的单毫米精度和直接检测术中并发症的检测,并不依赖于专用的手术室,并且无缝地集成到常见的立体定位过程中。
化学掺杂是控制分子半导体电子特性(包括其电导率和功函数)的关键过程。n 型掺杂聚合物的一个常见限制是在环境条件下不稳定性,这限制了 n 型掺杂聚合物的特性分析和器件应用。在本研究中,在以萘二酰亚胺和苝二酰亚胺为基础的主链的聚合物半导体薄膜上进行了用有机金属掺杂剂的顺序 n 型掺杂。(RuCp*Mes)2,{Cp* = 五甲基环戊二烯基;Mes = 1,3,5-三甲基苯} 实现了中等环境稳定性,这与简单的单电子还原剂二茂钴获得的不稳定 n 型掺杂状态形成鲜明对比。(RuCp*Mes)2 的高度阴极有效氧化还原电位约为。 − 2.0 V vs 二茂铁,抑制了空气中的反向电子转移反应和随后的掺杂剂损失,从而产生了观察到的空气稳定性。它还允许将苝二酰亚胺基聚合物还原到重复单元主要是双离子的状态。光电子测量表明,重掺杂聚合物的电离电位约为 3.9 eV。我们的研究结果表明,用 (RuCp*Mes) 2 进行化学掺杂是生产高稳定性、n 掺杂共轭聚合物的有效方法。
最新的NDE建模和仿真工具。使用此类工具可以实现几个好处。首先,制定物理参考标准以证明NDE功能所需的时间缩短,相关成本降低。这是通过使用工具在承诺昂贵制造之前优化物理参考标准的设计来实现的。第二,使用昂贵的NDE设备优化NDE数据采集参数的潜在漫长的步道和错误方法将被完全缩短或完全消除。最后,所使用的工具可以克服遇到新的材料和组件所遇到的新检查挑战,例如加上制造的零件(例如,由激光粉末床融合制造的裂缝关键金属太空飞行硬件)和先进的复合组件(例如,辐射剂,辐射剂,复合压力结构,复合材料覆盖压力容器)。
基因表达可以使用CRISPR -CAS9系统激活或抑制。然而,缺乏无需使用外源转录调节蛋白的基因表达激活的剂量依赖性激活的工具。在这里,我们描述了化学表观遗传学修饰剂(CEMS),旨在通过募集内源性染色质激活机械的合并来激活靶基因的表达,从而消除了对外源转录激活器的需求。该系统有两个部分:与FK506结合蛋白(FKBP)复合的催化无活性CAS9(DCAS9)和由与细胞表观遗传机械相互作用的分子相关的FK506的CEM。我们表明,根据基因,CEM在目标内源性基因座的基因表达上调高达20倍或更多。我们还证明了对转录激活的剂量依赖性控制,跨多种基因的功能,CEM活性的可逆性以及我们在整个基因组中最佳一流CEM的特异性。真核基因组被组织并包装成不同程度的压实,这有助于基因表达的调节。蛋白质 - 蛋白质和蛋白质-DNA相互作用的网络调节基因表达的适当水平。对该法规网络的破坏驱动了许多人类疾病,包括癌症1、2。雕刻染色质景观的重要因素是翻译后组蛋白尾巴修饰。赖氨酸乙酰化是一种具有生物物理和间接蛋白质摄取效应的修饰。受这些研究的启发,我们试图开发一种能够作家(组蛋白乙酰转移酶(帽子)),橡皮擦(组蛋白脱乙酰基酶(HDACS))和读取器(例如,溴结构域和染色体域)的蛋白质家族均匀控制基因表达3,4。几个小组已经证明了募集外来染色质修饰机械的能力,以一种以基因特异性方式控制扩张水平的一种方式5 - 11。随着CAS9和DCAS9技术的重大进展,精确诱导表达变化的能力迅速发展。Liszczak及其同事的开创性工作证明了使用DCAS9系统结合染色质调节蛋白的抑制剂12募集内源性机械的能力。ANSARI及其同事的其他工作使用了可编程的DNA结合配体,并结合了溴结构域抑制剂来调节转录13。
低速设施中风洞流质量测量和评估的现代框架 随着测试的复杂性增加,对风洞测试测量精度的要求也越来越严格。在风洞测试时间减少和测试成本增加的环境下,重要的是在较长时间内建立、维护和统计控制风洞设施中测量链所有组件的精确校准和验证。本文介绍了在贝尔格莱德军事技术学院的 T-35 4.4 m × 3.2 m 低速风洞中建立和维护测量质量控制系统所做的努力。该设施测量质量的保证基于确保三个主要组成部分的质量:风洞测试部分的校准、所用仪器的校准以及标准风洞模型的定期测试。介绍了相关风洞校准测试的样本结果,并将其与其他设施的结果进行了比较。测试证实了该设施的整体质量良好,并且必须保持、定期检查和系统地记录所达到的质量水平。关键词:风洞流动质量;低速风洞;标准校准模型;AGARD-B;ONERA M4。1.简介 风洞测试是任何飞机设计和开发的重要组成部分。预测未来飞行物体的空气动力学行为和特性的通常做法是进行相对小规模模型的风洞测试。为了确保对风洞数据进行有意义的解释,必须了解和纠正影响结果的影响因素;修正后的数据应与来自不同风洞或自由空气情况的数据具有可比性,[1]-[9]。此外,最好采用或多或少标准的校准和测试程序,以使来自不同风洞的数据尽可能接近可比性。在测试模型的风洞结果可用于预测未来飞行物体的气动特性之前,必须确定模型支撑系统和非均匀气流条件的影响随着风洞试验对测量精度的要求越来越严格,试验的复杂性也随之增加,并且在风洞试验时间减少、试验成本不断上升的环境下,重要的是对风洞设施中测量链的所有组件进行准确的校准和验证,更重要的是,在较长时间内保持和统计控制 [10]。
运营商可以对我们的 EVM 装置进行编程,以便在正常营运航班的选定阶段获取平衡数据(振动幅度和相位)。该装置计算最佳平衡调整,并向维护技术人员提供在特定位置更改重量的说明。计算可靠,在正常情况下可减少振动。通常不需要额外的地面运行验证。