阻碍了我们对底部拖网对全球碳周期的影响的理解以及对气候政策的潜在影响。保护存储在海洋沉积物,植物和动物中的有机碳已被确定为应对气候变化的有力工具(Hoegh-Guldberg等,2019)。然而,由于普遍的气候政策和碳市场,对海洋气候解决方案的吸收速度很慢,这些市场只能识别缓解活动,并对大气排放产生可衡量的影响。在当前范式下鉴定基于海洋的溶液的挑战在于量化由人为活性产生的大气排放的复杂性,该活动发生在海洋表面以下(Luisetti等,2020)。因此,解决这一挑战的研究对于发现可以利用海洋的全部潜力来促进气候变化的新机会至关重要。在这里,我们研究了1996 - 2020年间及以后的情况下释放到全球海洋中的拖网诱导的碳的命运,并估计了发射到大气的CO 2的比例。为了估计拖网诱导的CO 2排放,我们使用了Sala等人的假设和数据。(2021),迄今为止唯一一项估计拖网对海洋沉积物中Co 2级别的影响的研究,以及两类的海洋循环模型:(i)海洋循环逆模型(OCIM; 2°分辨率; Holzer等,2021),2021)和(II)NASA Goddard Institute for Space Eance(GISS 2(GISS)2(giss)。 Lerner等,2021)。The latter was used in coupled climate simulations under two realizations: prescribed atmospheric CO 2 concentrations (GISScon) and prognostic atmospheric CO 2 based on anthropogenic emissions, the land and ocean sink, and benthic trawling (GISSemis; Ito et al., 2020 ).GISS和OCIM模型用于通过模拟大气和海洋过程的复杂相互作用,来估计CO 2的空气传播和CO 2的内部海洋运输。这些模型通过对CO 2通过电流,对流,垂直混合,生物过程(仅GISS)和表面气体交换进行建模,从而提供了海洋和大气之间CO 2交换的详细时空估计。取决于地理位置和底部拖网的水深,CO 2在几个月到几个世纪内暴露于海面(Siegel等,2021年)。GISS和OCIM模型对最新观察结果进行了系统的评估,已被国际接受,并在CMIP6中被用于代表第六次评估报告(IPCC,2022年)的海洋过程(例如,空气 - 循环),并在全球碳预算中用于估算Surface PCO 2(Friedliedliedliedlingstein et Al,2020a)。
海洋酸化是由人类活动的二氧化碳(CO₂)升高驱动的,对海洋生态系统和全球生物多样性越来越严重。海洋从大气中吸收了大约30%的人类收成的Co co(WMO Green House Gas Bulletin,2023年),从而导致海洋化学的广泛变化。这些上升的CO₂水平触发化学过程,从而减少了海水的pH值并以损害许多海洋生物的方式改变了海洋的化学。在沿海地区,诸如营养素爆发和污染等因素会加剧酸化,从而形成Rapi d ph Cha n ge的“热点”。tly,tly cha nese dis cha nes con prupt ma rine food w ebs,dimi nish ecosy stem servi ces ces,并对依靠海洋资源依靠其生计,foo d和文化实践的数十亿人构成了重大风险(Bindoff等,2019)。
海洋酸化工作组 (OATF) 成员和工作人员要感谢所有前工作组成员为完成本报告所做的贡献,他们是 Chad Cook、Karen Rivera、Larry Swanson、James F. Gennaro、Todd Gardner 和 David Gugerty。虽然他们未能留在工作组直至报告完成,但他们的努力对于报告的形成和发展至关重要。此外,工作组还要感谢许多专家在以往的 OATF 会议上通过演讲提供了专业知识,包括 Janet Nye 博士、Teresa Schwemmer、Kyle Rabin、Frank Roethel 博士、Bradley Peterson 博士和 Chris Gobler 博士。这些演讲使工作组能够拓宽和加强集体知识基础,为本报告的制定提供借鉴。最后,工作组要感谢在工作组会议和文件审查过程中提供指导的专家,包括Tom Gulbransen、Peter Raymond博士、Maureen Dunn、Jason Greer、Grace Saba博士和Katie O'Brien-Clayton。他们的贡献非常宝贵,极大地增强了报告的完整性。
作者 KS Longmire · 2022 · 被引用 7 次 — 硬蛤是一种浅栖双壳类动物,具有短而可伸缩的虹吸管,可以紧密密封,表明其具有装甲防御策略...
败血症和严重的急性呼吸综合症冠状病毒2(SARS-COV-2)感染及其严重的冠状病毒疾病2019(Covid-19),代表了现代时代的主要医疗挑战。治疗选择是有限的,主要是症状的,部分依赖于抗体和皮质类固醇,而对于SARS-COV-2感染,抗病毒药物remdesivir补充,最近由Molnupivavir,Nirmatrelvir/Ritonavir/Ritonavir/Ritonavir/Ritonavir,Janus kinib和Janus kinib andib andib andib andib andib andibin。败血症和严重的SARS-COV-2感染/COVID-19在病理生理学和促炎性介体的水平上具有许多特征,从而实现了共同的疾病管理策略。成功针对败血症和严重的SARS-COV-2感染/ COVID-19的预后严重程度和死亡率标志物3(PTX3)的新想法;补体(C3/C3A/C3AR和C5/C5A/C5AR轴);肿瘤坏死因子(TNF)-α,白介素(IL)-1β和IL-6表达; IL-6触发的C5AR受体在血管内皮细胞中的表达;抗炎IL-10的释放仍然缺失。具有溶酶体特征的小分子,例如批准的阿米替林药物,德斯洛拉塔丁,氟氟氧胺,阿塞拉斯汀和ambroxol,已证明了它们在COVID-19的啮齿动物模型或临床试验中的临床益处。但是,它们的确切作用方式仍有待完全阐明。合理的药物重新利用批准的药物或筛查具有实际上溶酶体药理学作用的活性化合物是改善预防和治疗败血症和/或SARS-COV-2感染的主要机会,以及其严重的形式的COVID-19。针对与疾病相关的靶标,例如宿主细胞的病毒感染,脱落类似受体的受体(TLR),促炎性介质的表达,例如TNF-α,IL-1β,IL-1β,IL-6,PTX3,以及补充受体C5AR,强调了与当前的跨性别方法相比的优势。