Multibeam Echosounder(MBE)已成为海底映射的主要工具。技术进步和改进的数据处理方法提高了测深测量的准确性和空间分辨率,并且还导致了MBES反向散射数据的使用越来越多,用于海底地质和底栖生物栖息地映射应用。MBES BackScatter现在经常用于表征海洋陆战队和动物区系的栖息地,有助于开发有效的海洋空间规划和管理策略,并且通常可以更好地对海床进行分类。最近,进一步的技术进步使得在多声纳操作频率(多频反向散射)下对反向散射的获取和分析具有后续的潜在利益,可改善海底表征和分类。本评论重点介绍了与多频的海流声学反向散射相关的当前可用的同行评审论文,从而对不同底栖环境的贡献进行了全面的摘要,为相关应用程序和概述挑战和研究指示奠定了基础。
空中 RaN 和水下 AcN,从而形成一个无缝网络。此外,“先进”声纳浮标可用作获取数据预处理和数据融合的中间步骤,通过此步骤可实现数据缩减。这种数据缩减意味着更短的数据上传时间,这是在敌对地区执行 REA 操作的重要前提,因为空中 RaN 节点的长期存在可能会影响任务的成功。敌对地区行动表明,“先进”声纳浮标领域必须集成一个可以随时添加或抑制节点的网络,即使使用单个“先进”声纳浮标也能执行精简的操作。声学海洋浮标 (AOB) 遥测系统希望满足“先进”声纳浮标的特性。它使用标准“IEEE 802.11”WLAN 配置集成空中 RaN,并使用水听器阵列和声源集成水下 AcN。第一台 AOB 原型机在 2003 年 [3] 和 2004 年 [4] 的海事快速环境评估海上试验中进行了测试。2005 年 9 月 15 日至 10 月 2 日,在美国夏威夷考艾岛附近的 MakaiEx 海上试验中对 AOB 的现行版本进行了测试,此次试验是在美国圣地亚哥 HLS Research Inc 推动的高频计划的背景下进行的。下面将描述 AOB 的设计,讨论主要的系统特性,介绍 MakayEx AOB 工程测试,并指出未来的发展。系统设计 AOB 的物理特性在高度(1.2 米)、直径(16 厘米)、重量(40 公斤)和自主性(12 小时)方面与标准声纳浮标相似。然而,AOB 具有先进的功能,包括:独立或网络操作;本地数据存储;专用信号处理;GPS 授时和定位;实时数据传输和中继。本节简要介绍了AOB硬件和软件,并给出了“基站”(空中RaN节点)的主要特性。
美国海军在巴哈马群岛海舌南部 (TOTO) 运行的潜艇辐射噪声测量系统已接近使用寿命,需要在 2009 财年之前更换。这项为期四年的项目从 2005 财年开始,将在同一区域安装固定、底部安装、与岸上连接的声学系统,以取代现有的水面舰艇部署的潜艇辐射噪声高增益测量系统。主要系统基础设施安装于 2008 年 4 月至 5 月,声学传感器安装于 2008 年 7 月至 8 月。STAFAC 的初始作战能力 (IOC) 为 2008 年 10 月。机械、系泊和安装 (MMI) 综合项目团队由来自罗德岛州纽波特的海军水下作战中心 (NUWC)、加利福尼亚州波特休尼米的海军设施工程服务中心 (NFESC) 和加利福尼亚州文图拉的声音与海洋技术 (SST) 的人员组成,负责设计、制造 STAFAC 系统的机械部件,并安装整个 STAFAC 系统,包括位于巴哈马安德罗斯岛 AUTEC 的 MMI 和阵列部件。STAFAC 系统的配置如右图所示。STAFAC 水下机械系统包括所有底部安装的遥测和电缆、深海系泊设备以及纳入 AUTEC 陆地和海上站点的相关机械子系统。这些包括海底电力和遥测电缆、电光机械终端;遥测和电力转换接线盒的浅水安装结构;仪器压力容器;
“在为美国陆军进行凝胶推进剂工作之后,”Farrar 表示,“Resodyn 在各种推进剂、炸药和烟火材料的能量混合方面取得了进展。陆军还需要为关键武器系统制造爆炸材料。Resodyn 能够通过设计和制造生产规模的共振声学混合系统来满足他们的要求。该项目产生了一种创新的制造工艺,使爆炸材料的制造成本仅为原始成本的三分之一,迄今为止为军方节省了 1800 多万美元。而且它仍在服役。”
按照船舶的预定移动点 (PIM) 对您的 SUBMATT ® 进行编程;节省时间和金钱。通过对您的 SUBMATT ® 的航向、深度、速度、时间和被动音调变化进行编程来增加真实感。对您的 SUBMATT ® 进行编程,使其自动响应主动声纳询问。这是一个基于 Windows ® 95 及更高版本或 Windows ® NT 的程序,适用于至少具有 Intel ® Pentium ® 处理器或更高版本并具有 VGA 容量的 PC 或笔记本电脑。使用您的计算机、我们的软件、电缆、培训手册和便携式目标编程器 TM (PTP) 来创建目标的运行计划。
在硬壁、封闭截面风洞中进行测量对于开发安静的飞机和验证计算结果是理想的,而开放式喷气消声设施在声学上是更好的测量环境;封闭截面风洞对测试条件的空气动力学特性提供了很高的信心。飞机的气动噪声仍然是政府和工业界面临的主要问题,封闭截面风洞中声学测量的准确性和有效性至关重要。该项目始于现有概念;增强和修改技术以适应各种风洞设施。在工业环境中成功实施麦克风阵列后,开始了进一步的研究以改进物理技术。此类测试的限制之一是使用安装在风洞壁上的麦克风阵列时信噪比 (SNR) 较差。这可能会限制辨别接近或低于设施背景噪声水平的声源的能力。本研究的第二部分旨在研究传感器安装细节如何帮助提高信噪比。本报告介绍了麦克风安装策略的系统研究。结果表明,将单个麦克风凹进麦克风直径 (d) 的深度 (最多 2d) 可带来高达 3dB 的改善。将凹进深度增加到 2d 以上可带来高达 10dB 的改善,凹进深度达到 10d 可带来高达 20dB 的改善。最大的改善发生在 25 kHz 以下,尽管在 0 到 48 kHz 范围内也有改善。埋头凹槽的效果要么没有改善,要么背景噪声水平增加高达 20dB,这可能是由于凹槽孔径内的腔模式振荡。观察到不同密度的 Kevlar 布和丝绸覆盖物之间的 SNR 存在显著差异。当在凹进阵列的地板上添加声学泡沫衬里时,观察到背景噪声水平降低了 5 到 10dB。总体而言,这项研究的结论是,使用带有声学泡沫衬里的凹进阵列可以显著提高硬壁风洞测试中的麦克风阵列 SNR。研究的最后一部分旨在找到改进给定数量传感器的麦克风阵列的方法,观察风洞中测试模型的噪声源的方向性。主要关注的是找到阵列作为源定位可行工具的范围,并确定阵列范围极端处的源的误差,以改进未来的测量技术。
FRF(频率响应函数)提供了激励和响应之间的传递函数,它可以用来定位能量传递路径,或结构的一些重要动态特性
韩国仁川经济自由区 — IFEZ — 艺术中心的新音乐厅设计正在进行中。该音乐厅将成为亚洲爱乐乐团的所在地。它有 1,700 多个座位,包括 150 个合唱团。将采用葡萄园座位安排,但舞台区域周围的座位将最小化,以形成坚固的舞台围栏。每个座位区都设计有侧墙,以增加声学亲密度。侧墙之间的平均宽度设计为小于 15 米,每个座位都安排在距离最近侧墙 7.5 米以内。所有侧墙均设计为倾斜,以引导第一次反射并改善观众区的空间印象。扩散器功能性地安装在舞台上光源的有效反射表面上。通过计算机模拟和比例建模研究设计考虑因素。
1 1997 年至 2001 年的空中调查表明,灰鲸在无冰季节大部分时间都在萨哈林岛东北海岸附近觅食。它们主要位于 20 米水深轮廓线的近岸,从皮尔屯湾口到萨哈林岛东北海岸以北的区域。2001 年,在空中和船上调查中,在 Arktun-Dagi 许可区以南 30-45 米深的水域中发现了第二个觅食区。
3.1 简介 ---------------------------------------------------------------------------------- 6 3.2 声音传输的基本原理 ------------------------------------------------------------------ 6 3.3 测量方法 ---------------------------------------------------------------------------------- 9 3.3.1 单一数值评级 ----------------------------------------------------------------------------------10 3.4.2 频谱适应术语 ----------------------------------------------------------------------------------10 3.3.3 频率范围 ----------------------------------------------------------------------------------10 3.4 冷成型钢结构的声学特性 ------------------------------------------------------------------10 3.4.1 分隔墙 --------------------------------------------------------------------------------------------------12 3.4.2 分隔地板 --------------------------------------------------------------------------------------------------13 3.4.3 撞击声传输 --------------------------------------------------------------------------------------------------14