充血反应 1,8,10,12,13,自从通过光谱学发现以来,引起了人们的浓厚兴趣 1,6,8–18。19 两种无标记成像技术,功能性磁共振成像 6,10,15–17 (fMRI) 和宽视野(反射模式)光学显微镜,1,11–14 都为理解初始下降做出了宝贵贡献。 fMRI 是目前神经成像的主流,它通过检测顺磁性脱氧血红蛋白,非侵入性地获得大脑皮层范围内的大脑功能映射。4,10 即使是用于小动物成像的小口径形式,fMRI 也缺乏空间分辨率来辨别直径 < 50 μ m 的脑微血管的动态,20 初始下降被认为是起源于此处。 8、10 理论上,宽视野光学显微镜具有足够的空间分辨率,但在分辨深层血管时,往返光学散射严重,对微小吸收变化的灵敏度低;21 它也缺乏深度分辨率。2 因此,初始倾角现象仍未得到充分探索。6、12、15
长期以来,地方政府一直将“街头音乐表演”和“街头卖艺”视为令人讨厌甚至危险的行为,但近几十年来,立法发生了变化,允许采取更宽容的态度。由于这些活动在公共领域发挥着重要作用,并且“为城市日常生活的活力做出了贡献”(Simpson 2011),因此演出时间和舞台引起了讨论。新兴的社会倡议,如英国的“保持街道活力”、纽约的“街头卖艺项目”或巴塞罗那的“街头艺术家平台”,最近都要求街头艺人享有权利,并寻求与政府达成协议。在一些城市,街头艺人不仅容忍当代的街头卖艺法律,而且广泛接受(McNamara and Quilter 2016)。然而,并不是每个人都对街头艺人对街景的贡献充满热情。有些人对街头演员的存在感到厌烦 (Hasham 2012 ),而其他人则抱怨所播放音乐的质量 (Koziol 2013 )。
我们对气体稀薄对共振平面非线性声波能量动力学的影响进行了数值研究。问题设置是一个充满气体的绝热管,一端由以管的基本共振频率振动的活塞激发,另一端封闭;非线性波逐渐陡化,直到达到极限环,在足够高的密度下形成激波。克努森数(这里定义为特征分子碰撞时间尺度与共振周期之比)通过改变气体的基准密度在 Kn = 10 − 1 − 10 − 5 范围内变化,从稀薄状态到密集状态。工作流体为氩气。用 Bhatnagar-Gross-Krook (BGK) 模型封闭的玻尔兹曼方程的数值解用于模拟 Kn ≥ 0.01 的情况。对于 Kn < 0 . 01 ,使用完全可压缩的一维 Navier-Stokes 方程和自适应网格细化 (AMR) 来解析共振弱冲击波,波马赫数高达 1.01 。非线性波陡化和冲击波形成与波数-频率域中声能的频谱展宽有关;后者是根据 Gupta 和 Scalo 在 Phys. Rev. E 98, 033117 (2018) 中得出的二阶非线性声学的精确能量推论定义的,代表系统的 Lyapunov 函数。在极限环处,声能谱表现出惯性范围内斜率为 −2 的平衡能量级联,同一作者在自由衰减的非线性声波中也观察到了这种现象。在本系统中,能量在低波数/频率时通过活塞从外部引入,在高波数/频率时由热粘性耗散平衡,导致系统基准温度升高。热粘性耗散率在基于最大速度振幅的固定雷诺数下按 Kn 2 缩放,即随流动稀疏程度而增加;一致地,极限环处陡峭波的最小长度尺度(对应于冲击波(存在时)的厚度)也随 Kn 而增加。对于给定的固定活塞速度振幅,光谱能量级联的惯性范围的带宽随克努森数的增加而减小,导致系统的共振响应降低。通过利用柯尔莫哥洛夫流体动力学湍流理论中的无量纲缩放定律,结果表明,基于域内最大声速幅,可以预期声学雷诺数 Re U max > 100 的谱能量传递惯性范围。
首先感谢 Didier Clouteau 和 Jean-François Deü 教授同意带回我的论文手稿,以及 Fabrice Thouverez 教授同意审查我的论文,感谢他们全身心投入阅读这份手稿并参加我的论文评审。现在我要感谢我的论文指导者 Christian Soize 教授,感谢他的严谨以及他在这三年的论文中给予我的时间。我还要感谢我的主管 Evangéline Capiez-Lernout 和 Moustapha Mbaye 的投资、帮助和建议。我还要感谢所有赛峰科技公司、MSME 实验室的长期和临时工作人员,特别是 118 办公室的安东尼、布莱恩、贾斯汀、昆汀、文森特,感谢他们营造的良好氛围以及他们一贯的良好态度。幽默。最后,我要感谢我的家人和艾米莉的出席和支持。
光声成像 (PAI) 是一种非侵入性混合成像方式,可提供丰富的光学对比度和高深度分辨率比的深层组织成像。体内存在的内源性发色团(如血红蛋白、脂质、黑色素等)由于在某些光学窗口具有强光吸收性而提供强大的光声对比度。为了进一步提高 PAI 的性能,研究人员开发了几种外源性造影剂,如金属纳米粒子、碳基纳米材料、量子点、有机小分子、半导体聚合物纳米粒子等。这些外源性造影剂不仅有助于提高成像对比度,而且还使靶向分子成像成为可能。在这篇评论文章中,我们首先讨论了具有内源性造影机制的最先进的 PAI 技术。然后,我们概述了用于体内成像应用的外源性光声造影剂的最新进展。最后,我们介绍了现有 PA 造影剂的优缺点以及基于造影剂的 PAI 在生物医学应用中的未来挑战。
“在为美国陆军进行凝胶推进剂工作之后,”Farrar 表示,“Resodyn 在各种推进剂、炸药和烟火材料的能量混合方面取得了进展。陆军还需要为关键武器系统制造爆炸材料。Resodyn 能够通过设计和制造生产规模的共振声学混合系统来满足他们的要求。该项目产生了一种创新的制造工艺,使爆炸材料的制造成本仅为原始成本的三分之一,迄今为止为军方节省了 1800 多万美元。而且它仍在服役。”
AN/SSQ-53 定向频率分析和记录 (DIFAR) 声纳浮标是一种消耗性设备,可以沿两个正交水平轴推导出声粒子速度以及声压。通过此信息,只需一个紧凑型传感器便可计算出低频声源的方位角。估算这些传感器方位角的标准方法是通过传统的波束形成(即添加加权时间序列),但得到的“心形”波束模式不精确、计算成本高,并且对于弱信号容易受到方向性噪声污染。这里演示了一种替代乘法处理方案,该方案计算声信号的“有效强度”以获取噪声场作为时间和频率函数的主要方向性。此信息可以方便地显示为“方位图”,类似于频谱图,但使用颜色来表示方位角而不是强度。来自多个位置的数据证明了这种方法,无需对原始信号进行解复用即可进行计算。Azigram 已用于帮助诊断声纳浮标问题、提高可检测性和估计低信噪比信号的方位。Azigram 还可以增强对定向噪声场中嵌入信号的检测和潜在分类。V C 2019 美国声学学会。https://doi.org/10.1121/1.5114810
本出版物是对 NIST 手册 150《NVLAP 程序和一般要求》的补充,其中包含美国联邦法规 (CFR) 第 15 篇第 285 部分以及所有一般 NVLAP 程序、标准和政策。NIST 手册 150 中的标准涵盖 ISO/IEC 指南 25 的要求和 ISO 9002(ANSI/ASQC Q92-1987)的相关要求。手册 150-8 包含特定于声学测试服务计划的信息,并且不会重复 NVLAP 程序和一般要求中包含的信息。它与手册 150 相互引用;例如,手册 150 第 285.3 节介绍了 NVLAP 的描述和目标,而手册 150-8 第 285.3 节则介绍了声学测试服务计划。如果没有特定于认证领域的材料,则省略部分编号。
表格列表.............................................................................................................................................................................................................................................................xiii