细胞在敌对或营养不足的环境中生存的主要挑战之一,例如肿瘤微环境,是由代谢失衡或快速增殖引起的活性氧(ROS)缓冲活性氧(ROS)。过多的ROS的细胞需要产生保护性分子,例如谷胱甘肽,以减轻破坏性作用。谷胱甘肽的产生需要半胱氨酸,通常通过SLC7A11胱氨酸 - 谷氨酸抗虫剂从细胞外环境中吸收氧化二聚体形式,胱氨酸。如果胱氨酸的摄取被阻断,细胞会经历铁毒性,这是由磷脂过氧化引起的铁依赖性死亡,尤其是多不饱和脂肪酸(PUFA),导致质膜膜中的广泛异常。铁凋亡通过白介素释放(IL-1和IL-18)激活免疫系统,并与炎症性疾病和伤害有关(1次审查1)。为了避免铁铁作用,许多癌症上调了SLC7A11,并进口大量胱氨酸以进行有效的谷胱甘肽生产。然而,这还需要准备好通过五磷酸五磷酸途径生产NADPH的葡萄糖,以便可以减少胱氨酸以降低用于谷胱甘肽生物合成(图1)。
摘要 细胞骨架的完整性对于吞噬作用和细胞内运输等多种细胞过程至关重要。肌动蛋白细胞骨架的组织和动态破坏会导致与年龄相关的症状和疾病,从癌症到神经退化。此外,肌动蛋白细胞骨架完整性的变化不仅会破坏体细胞和干细胞的功能,还会破坏配子的功能,导致胚胎发育异常。因此,保持细胞骨架完整性和动态的策略可能对与年龄相关的疾病有治疗作用。本文的目的是重新审视目前对肌动蛋白细胞骨架在衰老中所起的作用的理解,并回顾基础研究向干预发展转变的机遇和挑战。希望通过掌握肌动蛋白动态随年龄变化的证据,为未来的研究提供关于抗衰老医学的见解。
电子邮件:yasminahmed4488@gmail.com摘要背景:多达80%的男性和50%的女性在生活中的某个时候将拥有雄激素性脱发(AGA),这使其成为最普遍的脱发。 是由于脱氢睾丸激素(DHT)的作用,一种睾丸激素代谢物,对雄激素敏感的毛囊的作用,受影响的毛发的宽度,长度和颜色在AGA中逐渐降低。 到达pili肌肉由没有细胞质条纹且具有集中雪茄形核的梭形细胞组成。 这些肌肉在凸起区域的毛囊周围围绕着毛囊,并以急性角度链接到它。 研究表明,大鼠和人类毛囊的皮肤鞘均包含α平滑肌 - 肌动蛋白(α-SMA),但是该蛋白在皮肤乳头细胞中没有发现。 在这篇文章中,我们将研究雄激素性脱发的病理生理以及α平滑肌阳肌素如何在其中发挥作用。 毛囊中结构完整性的丧失可能是α-SMA对AGA造成的一种方式。 在AGA患者的顶点区域,α-SMA的表达显着降低。 此外,与枕叶区域相比,AGA患者的顶点区域显示出α-SMA表达的降低。 关键字:毛囊,雄激素脱发(AGA)以及α平滑肌 - 肌动蛋白(α-SMA)。 引言头发散发出,变短,由于Aga而失去颜色。 脱氢睾丸激素(DHT),一种睾丸激素的副产品,会触发雄激素敏感毛囊中的脱发。 这些细胞的细胞质没有条纹。电子邮件:yasminahmed4488@gmail.com摘要背景:多达80%的男性和50%的女性在生活中的某个时候将拥有雄激素性脱发(AGA),这使其成为最普遍的脱发。是由于脱氢睾丸激素(DHT)的作用,一种睾丸激素代谢物,对雄激素敏感的毛囊的作用,受影响的毛发的宽度,长度和颜色在AGA中逐渐降低。到达pili肌肉由没有细胞质条纹且具有集中雪茄形核的梭形细胞组成。这些肌肉在凸起区域的毛囊周围围绕着毛囊,并以急性角度链接到它。研究表明,大鼠和人类毛囊的皮肤鞘均包含α平滑肌 - 肌动蛋白(α-SMA),但是该蛋白在皮肤乳头细胞中没有发现。在这篇文章中,我们将研究雄激素性脱发的病理生理以及α平滑肌阳肌素如何在其中发挥作用。毛囊中结构完整性的丧失可能是α-SMA对AGA造成的一种方式。在AGA患者的顶点区域,α-SMA的表达显着降低。此外,与枕叶区域相比,AGA患者的顶点区域显示出α-SMA表达的降低。关键字:毛囊,雄激素脱发(AGA)以及α平滑肌 - 肌动蛋白(α-SMA)。引言头发散发出,变短,由于Aga而失去颜色。脱氢睾丸激素(DHT),一种睾丸激素的副产品,会触发雄激素敏感毛囊中的脱发。这些细胞的细胞质没有条纹。牙冠区域的弥漫性稀疏和额叶发际线的保存是脱发的路德维希(Ludwig)模式的特征是AGA女性经历的症状。在男性模式秃发中,额叶发际线在耳朵后面稍微退缩,然后在顶点散布散开[1]。以前认为每个毛囊都连接到其自身的AP。组织学切片揭示了浓缩的核,这些核是“雪茄形”的,并以到达pili(APM)细胞的梭形形状为特征。通常,APM在卵泡的侧面显示为与皮肤表面急性角的正常结构。在末端和牛皮毛上,APM的近端末端环绕着凸起区域的整个卵泡[2]。人卵泡,大鼠毛皮和大鼠颤音都包括平滑肌α-肌动蛋白。抗原在任何卵泡类型中均未由皮肤乳头细胞表达。然而,这种抗体在培养的头发中染色了大部分皮肤乳头和真皮鞘细胞。用脱敏抗体检查时,相同的细胞会恢复为阴性[3]。材料和方法数据来源:使用Medline数据库进行了文献综述(Pub
摘要越来越多地赞赏,核的结构成分通过改变染色质组织来调节基因可及性。虽然核膜连接器蛋白将机械敏感性肌动蛋白细胞骨架与核骨架联系起来,但肌动蛋白对核内部结构的贡献仍然神秘。控制肌动蛋白转运到细胞核中,加上控制肌动蛋白结构(肌动蛋白工具盒)的蛋白质的存在,这表明核肌动蛋白可以支持基因表达的生物力学调节。细胞肌动蛋白结构是机械响应性的:通过在质膜传播力在细胞核中传播的力产生的肌动蛋白电缆。我们认为,对这种生物力学提示的响应动态肌动蛋白重塑为表观遗传景观提供了新的结构控制水平。我们在这里提出要对机械力可以促进肌动蛋白转移到细胞核和控制结构排列的事实中,如间充质干细胞中所示,从而调节谱系承诺。
作者 C Beta · 2023 年 · 被引用 28 次 — 其次,我们可以区分机械化学模型,其中肌动蛋白聚合产生的机械力是波的组成部分......
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年1月4日。 https://doi.org/10.1101/2024.01.03.574123 doi:Biorxiv Preprint
本研究介绍了新型锡(IV)氧化物 /还原石墨烯(SNO 2 /RGO)纳米复合材料的合成和深入评估,作为晚期电化学超级电容器的电极材料开发了。利用具有优化参数的可扩展合成方法,由X射线衍射(XRD),透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征所得的纳米复合材料,揭示其明确定义的形态,晶体结构和组成。包括射流电荷 - 电荷 - 电荷 - 电荷 - 电荷障碍,电化学障碍光谱(EIS)(EIS)和环状伏安法(CV)的全面电化学评估表明,与纯SNO 2相比,SNO 2 /RGO表现出出色的性能指标。值得注意的是,在1 a g -1的电流密度下,SNO 2 /RGO纳米复合材料达到了140 f g -1的比电容,超过了纯SNO 2的133 f g -1。这些发现突出了SNO 2 /RGO纳米复合材料可显着增强储能能力的潜力,使其成为电动汽车,便携式电子设备和可持续能源系统应用的有前途的候选人。
肌动蛋白细胞骨架重塑驱动细胞运动,细胞与细胞接触以及膜和细胞器动力学。这些细胞在免疫细胞中以特别高的速度运行,因为这些细胞通过各种组织迁移,与多个细胞伴侣相互作用,摄入的微生物和分泌效应分子。由于编码近端和远端肌动蛋白调节剂的基因突变引起的罕见的先天免疫力,强调了肌动蛋白细胞骨架重塑在维持人类免疫细胞任务中的中心作用。与免疫细胞中一些基于肌动蛋白的过程的特异性一致,某些受影响的基因的表达(例如WAS,ARPC1B和HEM1)仅限于造血室。对这些自然缺陷的探索强调了一个事实,即肌动蛋白重塑的分子控制在髓样和淋巴机免疫细胞的各种子集中明显调节,并维持与大量专业任务相关的不同网络。此外,单个肌动蛋白重塑蛋白的缺陷通常与部分细胞损伤有关,突出了肌动蛋白细胞骨架重塑的可塑性。本综述涵盖了与疾病相关的肌动蛋白调节剂在促进基于肌动蛋白的免疫细胞过程中的作用。它集中于这些调节剂在各种免疫细胞亚群中的特定分子功能,并响应不同的刺激。鉴于仅最近表征了许多与免疫相关的肌动蛋白缺陷的事实,我们进一步讨论了破译基本的病情机制所面临的挑战。
Luca La Via 1, Elona Ndoj 1, Matteo Bertoli 1, Veronica Mutti 1, Giulia Carini 1, Alice Filippini 1.2, Federica Bono 1, Chiara Fiorentini 1, Giovanni Ribaudo 1, Alessandra Gianonelli 1, Giuseppe Borsani 1 Isabella Russo 1.2, Alessandro Baron 1.3
结果:CS-SNRK - / - 小鼠对TAC的反应41表现出更差的心脏功能和心脏肥大,并且心脏中DDR Marker PH2AX的增加。此外,体外SNRK 42敲低导致DNA损伤和染色质压实增加,核平整度和3D体积的变化43。磷酸化 - 蛋白质研究确定了一个新型的SNRK靶标,44 DSTN,这是F-肌动蛋白去聚合因子(ADF)蛋白的成员,该蛋白直接与直接结合的F-actin结合,45 dypoletymerize F-肌动蛋白。SNRK与DSTN结合,除了细胞肥大外,DSTN下调还会逆转多余的DNA 46损伤和核参数的变化,而SNRK 47敲低。我们还证明,SNRK敲低促进了过度的肌动蛋白48解聚,该解聚,通过球状(G-)肌动蛋白与F-肌动蛋白的比率增加。最后,F-肌动蛋白的药理学稳定剂Jasplakinolide 49挽救了SNRK中DNA损伤增加和50个异常核形态的稳定剂。51