摘要 SCAR/WAVE 蛋白和 Arp2/3 复合物在前缘组装分支肌动蛋白网络。SCAR/WAVE 的两种亚型 WAVE1 和 WAVE2 位于前缘,但它们是否发挥相似或不同的作用仍不清楚。此外,关于 WAVE1 对肌动蛋白丝伸长的 Arp2/3 独立生化活性的报道存在矛盾。为了在体内研究这一点,我们在 B16-F1 黑色素瘤细胞中分别和同时敲除 WAVE1 和 WAVE2 基因。我们证明 WAVE1 和 WAVE2 对于板状伪足的形成和运动是多余的。然而,WAVE2 KO 细胞的前缘肌动蛋白延伸率显著降低,而 WAVE1 KO 细胞的前缘肌动蛋白延伸率增加。WAVE1 KO 细胞中肌动蛋白延伸率的加快被更快的逆向流动所抵消,因此不会转化为更快的板状伪足突出。因此,WAVE1 限制了前缘肌动蛋白延伸的速度,并似乎将肌动蛋白网络与膜偶联以驱动突出。总体而言,这些结果表明 WAVE1 和 WAVE2 在促进 Arp2/3 依赖性肌动蛋白成核和板状伪足形成方面具有冗余作用,但在控制肌动蛋白网络延伸和利用网络生长进行细胞突出方面具有不同的作用。
黄油中的生动结构颜色是由光子纳米结构散射光引起的。结构颜色用于众多生物信号功能,并具有重要的技术应用。从光学上讲,这种结构是充分理解的,但是对它们在体内发展的洞察力仍然很少。我们表明,肌动蛋白与黄油翼鳞片中的结构颜色形成密切相关。使用成人和发展中H. sara的虹彩(结构上有色)和非冰箱尺度之间的比较,我们表明虹彩尺度具有更密集的肌动蛋白束,导致倾斜脊密度增加。超分辨率的微分析跨三个遥远相关的黄油种类揭示,肌动蛋白在尺度发育过程中反复重新安排,并且在形成光学纳米结构时至关重要。此外,在这些后期的发育阶段进行肌动蛋白扰动实验导致H. Sara的结构颜色几乎几乎总损失。总体而言,这表明肌动蛋白在黄油含量尺度的结构颜色形成过程中起着至关重要的直接模板作用,从而提供了在鳞翅目中可能具有普遍性的脊模式机制。
近几十年来,随着太赫兹 (THz) 光源的发展,工业和医学应用相继被提出。此外,THz 辐射对人体健康的毒性也引起了在此频率区域工作的研究人员的浓厚兴趣 1 。两个项目,欧洲 THz-BRIDGE 和 SCENIHR 的国际 EMF 项目 2 ,总结了近期有关 THz 辐射对人体影响的研究。例如,THz 波对 DNA 稳定性产生非热影响 3 – 5,这可能导致人类淋巴细胞的染色体畸变 6 。还证明了小鼠皮肤中伤口反应基因的转录激活 7 和人造人体 3D 皮肤组织模型 8 中的 DNA 损伤。大多数研究集中在上皮和角膜细胞系,因为在这个频率区域液态水的强烈吸收下,THz 光子在组织表面被完全吸收。但是,如果将 THz 辐射转换为可以传播到水中的另一种能量流,THz 波的照射可能会对组织内部造成损伤。事实上,THz 光子能量一旦被体表吸收,就会转换为热能和机械能。我们最近观察到 THz 脉冲在液态水表面产生冲击波 9 。产生的冲击波可以传播几毫米深。类似的现象也可能发生在人体上。THz 诱导的冲击波会对生物分子产生机械应力并改变其形态。THz 辐射的这种间接影响尚未被研究过。为了揭示 THz 诱导的冲击波对生物分子的影响,我们重点研究了肌动蛋白的形态。肌动蛋白有两种功能形式,单体球状 (G)-肌动蛋白和聚合丝状 (F)-肌动蛋白。肌动蛋白丝形成复杂的细胞骨架网络,在细胞形状、运动和分裂中起着至关重要的作用 10 。使用肌动蛋白的一个优点是,我们可以很容易地从组织中获得足够的纯化 G- 肌动蛋白 11 ,以重建体外聚合反应。肌动蛋白丝可以通过用硅-罗丹明 (SiR)-肌动蛋白染色直接在荧光显微镜下观察 12 。由于肌动蛋白在正常和病理细胞功能中起着关键作用,包括转录调控、DNA 修复、癌细胞转移和基因重编程 13 - 16 ,各种化合物和调节蛋白已被分析用于研究和治疗目的 17 。在这项研究中,我们调查了 THz 诱导的冲击波对肌动蛋白丝的影响
小梁网(TM)细胞中的交联肌动蛋白网络(氏族)可能通过改变TM细胞功能和刚度来增加IOP。但是,缺乏直接证据。在这里,我们开发了转化的TM细胞,形成自发荧光标记的氏族。通过将转化的青光眼TM(GTM3)细胞与柔抗脱反应-EGFP-BLASTR慢病毒载体载体并用BlastCidin选择,构建了稳定的细胞。使用原子力显微镜研究了GTM3-氟法中GFP细胞的刚度。还测量了用/不含地塞米松/TGFβ2处理的原代人TM细胞中氏族的弹性模量,以验证在GTM3-氟法中GFP细胞中的发现。对用1μM拉氏蛋白B或Phrodo Bioparticle处理的GTM3-氟法中的活细胞成像分别确定肌动蛋白稳定性和吞噬作用。GTM3-脱反性GFP细胞形成自发氏族,而无需诱导TGFβ2或地塞米松。与没有氏族的细胞相比,含有细胞的氏族显示出升高的细胞刚度,对latrunculin b诱导的肌动蛋白去聚合的抗性以及造成的吞噬作用。用来塞米松或TGFβ2诱导的氏族的原代人TM细胞也被僵硬,吞噬细胞较少。GTM3- LIFEACT-GFP细胞是研究TM中氏族的机械生物学和病理学的新工具。这些细胞的初始表征表明,氏族至少有助于TM细胞的一些青光眼表型。
c。秀丽隐杆线虫是一种自由生活的线虫,被广泛用作研究基本生物学过程和疾病机制的小动物模型。自2011年发现奥赛病毒以来,c。秀丽隐杆线虫还具有剖析完整动物中病毒宿主相互作用网络和先天抗病毒途径的希望。ORSAY病毒主要靶向蠕虫肠,导致肠腔肿大以及对感染细胞(例如细胞质液化和令人费解的顶端边框)的可见变化。 Orsay病毒的先前研究确定为c。 秀丽隐杆线虫能够通过DRH-1/ RIG-I介导的RNA干扰和细胞内病原体反应来安装抗病毒反应,这是一种通过3 0末端尿液化和泛素蛋白蛋白质修饰和转移和泛素蛋白质的修饰和转移和泛素蛋白质的修饰和泛素的尿液RNA的尿路溶解剂。 在c中全面搜索新的抗病毒途径。 秀丽隐杆线虫,我们使用现有的细菌RNAi库来摄取全基因组RNAi筛查,覆盖整个基因组的94%。 在确定的106个潜在抗病毒基因命中中,我们研究了三种新途径的抗病毒基因:胶原蛋白,肌动蛋白重塑和表观遗传调节剂。 通过表征RNAi和突变蠕虫中的Orsay病毒感染,我们的结果表明,胶原蛋白可能在肠细胞中形成物理屏障,从而通过预防奥赛病毒进入来抑制病毒感染。ORSAY病毒主要靶向蠕虫肠,导致肠腔肿大以及对感染细胞(例如细胞质液化和令人费解的顶端边框)的可见变化。Orsay病毒的先前研究确定为c。秀丽隐杆线虫能够通过DRH-1/ RIG-I介导的RNA干扰和细胞内病原体反应来安装抗病毒反应,这是一种通过3 0末端尿液化和泛素蛋白蛋白质修饰和转移和泛素蛋白质的修饰和转移和泛素蛋白质的修饰和泛素的尿液RNA的尿路溶解剂。在c中全面搜索新的抗病毒途径。秀丽隐杆线虫,我们使用现有的细菌RNAi库来摄取全基因组RNAi筛查,覆盖整个基因组的94%。在确定的106个潜在抗病毒基因命中中,我们研究了三种新途径的抗病毒基因:胶原蛋白,肌动蛋白重塑和表观遗传调节剂。 通过表征RNAi和突变蠕虫中的Orsay病毒感染,我们的结果表明,胶原蛋白可能在肠细胞中形成物理屏障,从而通过预防奥赛病毒进入来抑制病毒感染。在确定的106个潜在抗病毒基因命中中,我们研究了三种新途径的抗病毒基因:胶原蛋白,肌动蛋白重塑和表观遗传调节剂。通过表征RNAi和突变蠕虫中的Orsay病毒感染,我们的结果表明,胶原蛋白可能在肠细胞中形成物理屏障,从而通过预防奥赛病毒进入来抑制病毒感染。Furthermore, evidence suggests that actin remodeling pro- teins ( unc-34 , wve-1 and wsp-1 ) and chromatin remodelers ( nurf-1 and isw-1 ) exert their antiviral activities by regulating the intestinal actin ( act-5 ), a critical component of the termi- nal web which likely function as another physical barrier to prevent Orsay infection.
摘要:中枢神经系统(CNS)被认为是一种免疫学上独特的部位,鉴于其由血脑屏障(BBB)广泛保护,因此很大程度上是一个独特的部位。随着我们对外围免疫系统和中枢神经系统之间复杂相互作用的了解,正在填充免疫特权的机制。在这里,我们研究了树突状细胞(DC)与BBB在稳定状态的条件下的相互作用,并观察到与非迁移DC相比,转移的DC显示出激活的表型和更强的T细胞刺激能力。接下来,我们的目的是在整个BBB移民后的DC激活过程中获得进一步的见解。我们研究了DC与内皮细胞的相互作用,以及肌动蛋白细胞骨骼重组的参与。虽然我们无法证明DCS在整个BBB的迁移过程中吞噬了膜的碎片碎片,但在BBB迁移过程中,内皮细胞被标记为内皮细胞,我们发现,通过LATRUNCULIN-A阻碍了DC对DC进行重组,这显着损害了整个BBB的范围内的DC,并在BBB上跨越了dc的范围,dc的迁移范围很大。可以证明表型激活。 这些观察结果有助于当前对DC与BBB之间相互作用的理解,最终导致设计了能够抑制CNS自身免疫性渗透的靶向疗法。虽然我们无法证明DCS在整个BBB的迁移过程中吞噬了膜的碎片碎片,但在BBB迁移过程中,内皮细胞被标记为内皮细胞,我们发现,通过LATRUNCULIN-A阻碍了DC对DC进行重组,这显着损害了整个BBB的范围内的DC,并在BBB上跨越了dc的范围,dc的迁移范围很大。可以证明表型激活。这些观察结果有助于当前对DC与BBB之间相互作用的理解,最终导致设计了能够抑制CNS自身免疫性渗透的靶向疗法。
量子细胞自动机。”微系统技术,Biplab Das、Avijit Kumar Paul 和 Debashis De,第 1 卷 (28),第 1-14 页,ISSN:1432-1858 (2020) “使用 Actin 量子细胞进行纳米通信的路由器设计
在细胞表面,肌动蛋白细胞骨架和质膜在与细胞表面重塑有关的多种过程中相互相互作用。已知肌动蛋白细胞骨架可调节膜组织并重塑膜。为此,肌动蛋白 - 膜连接分子在调节肌动蛋白组装中起着重要作用,并在空间上指导肌动蛋白细胞骨架与膜之间的相互作用。虽然细胞中的研究为肌动蛋白 - 膜界面的分子组成和相互作用提供了丰富的知识,但复杂的分子相互作用使阐明界面处肌动蛋白 - 膜接头的精确效果变得具有挑战性。由模型膜和纯化蛋白组成的合成重构系统已成为一种强大的方法,可以阐明肌动蛋白 - 膜连接器如何直接肌动蛋白组装以驱动膜形状变化。在这篇综述中,我们将仅专注于使用重建系统研究的几个肌动膜连接器。我们将讨论这些重构系统的设计主要范围,以及它们如何为理解肌动蛋白 - 膜连接器的细胞功能做出贡献。最后,我们将在理解复杂的肌动蛋白 - 膜相互作用的未来研究方向上提供一个观点。
图S3。用于检测HPNPO的抗体似乎无法识别果蝇PNPO。(a)普遍存在的SGLL敲低(基因型:actin -gal4/uas -SGLL RNAI)和对照曲线(基因型:actin -gal4/+和uas -sgll rnai/+)中的SGLL mRNA水平。n =每个基因型4。误差线代表平均值±SEM。* P <0.05。单向方差分析与Tukey的邮政为HOC。(b)具有各种基因型的成人头部匀浆的蛋白质印迹。n =每个基因型2。微管蛋白是负载对照。从所有三种基因型中检测到一种结合。这个乐队的大小似乎是正确的;果蝇PNPO的预测分子量(约27 kDa)。然而,SGLL敲低频率中的带强度与两个对照中的带强度相同,表明该频带不太可能是果蝇PNPO。