extended 2D Tinkham model Yue Liu, 1,2,† Yuhang Zhang, 1,2,† Zouyouwei Lu, 1,2,† Dong Li, 1,3,* Yuki M. Itahashi, 3 Zhanyi Zhao, 1,2 Jiali Liu, 1,2 Jihu Lu, 1,2 Feng Wu, 1,4 Kui Jin, 1,2,5 Hua Zhang,1 Ziyi Liu,1小居,1,2,5,** Zhongxian Zhao,1,2,5 1北京国家冷凝物质物理学实验室,物理研究所,中国科学院,中国100190,中国。2个物理科学学院,中国科学院,北京100049,中国。 3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。2个物理科学学院,中国科学院,北京100049,中国。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。5,中国广东523808的东瓜材料实验室。摘要。批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。我们进一步证明了该模型在(Li,Fe)Ohfese和cetyltrimethyl铵(CTA +) - 钙化(CTA)0.5 SNSE 2超导体中的有效性,突出了其广泛的适用性。这项工作提供了对大量2D超导性的有价值的见解,并建立了扩展的2D Tinkham模型,用于定量提取插入的分层超导体中的固有超导性能,尤其是那些表现出明显的层间未对准的超导体。†这些作者也同样贡献。*联系作者:dong.li.hs@riken.jp **联系作者:dong@iphy.ac.cn
Date : 26 February 2025 Country/Borrower : Georgia Title of Proposed Project : GEO: Energy Storage and Green Hydrogen Development Project Name and Address of Executing Agency : Ministry of Economy and Sustainable Development 1, Zviad Gamsakhurdia Embankment, 0114 Tbilisi, Georgia Brief Description of the Project : The proposed Energy Storage and Green Hydrogen Development Project (formerly Energy Storage and Green Hydrogen Development Program) through investment and政策支持将有助于加强佐治亚州电网的安全性,改善监管框架,并为更大的私营部门参与开发可再生能源的发展铺平道路,包括风,太阳能和绿色氢。该项目将与以下影响保持一致:(i)改善能源部门的财务可持续性和绩效; (ii)能源发电和传输部门中的温室气体排放量低于2030年参考方案投影。预期的结果是能源安全增强。拟议的项目将通过三个输出来帮助政府增强能源安全:(i)安装和运营; (ii)允许批准可持续电池储能系统(BESS)部署的政策和监管框架; (iii)开发了随着私营部门参与的绿色氢。200 MW / 200 MWH BESS将是Georgian State Electrosystem(GSE)电源系统中的第一个大规模,网格连接的电池存储系统。主要任务是为初级和次要控制提供快速控制(FFC)功率。可靠性是由于应用领域而引起的最高优先级。工厂的主要目的是确保独立于外部出口频率调节服务的格鲁吉亚电网的安全稳定操作。因此,可以实现来自国家TSO(GSE)的一致和独立的全频率控制。因此可以大大降低部分或完整停电的概率。这种网格稳定性是从易挥发的可再生能源中进一步且可靠地扩展大量计划发电单元的先决条件。此外,BESS应用程序还应该能够提供次要控制绩效(同时)。该系统应能够全力启动,并能够提供电压调节。覆盖目标应是可再生能源的更高集成。其主要任务将是提供频率控制功率(主要,次要),但不限于此应用程序类型。连接点将在220 kV水平的KSANI变电站处。
结果:CS-SNRK - / - 小鼠对TAC的反应41表现出更差的心脏功能和心脏肥大,并且心脏中DDR Marker PH2AX的增加。此外,体外SNRK 42敲低导致DNA损伤和染色质压实增加,核平整度和3D体积的变化43。磷酸化 - 蛋白质研究确定了一个新型的SNRK靶标,44 DSTN,这是F-肌动蛋白去聚合因子(ADF)蛋白的成员,该蛋白直接与直接结合的F-actin结合,45 dypoletymerize F-肌动蛋白。SNRK与DSTN结合,除了细胞肥大外,DSTN下调还会逆转多余的DNA 46损伤和核参数的变化,而SNRK 47敲低。我们还证明,SNRK敲低促进了过度的肌动蛋白48解聚,该解聚,通过球状(G-)肌动蛋白与F-肌动蛋白的比率增加。最后,F-肌动蛋白的药理学稳定剂Jasplakinolide 49挽救了SNRK中DNA损伤增加和50个异常核形态的稳定剂。51
肌动蛋白细胞骨架重塑驱动细胞运动,细胞与细胞接触以及膜和细胞器动力学。这些细胞在免疫细胞中以特别高的速度运行,因为这些细胞通过各种组织迁移,与多个细胞伴侣相互作用,摄入的微生物和分泌效应分子。由于编码近端和远端肌动蛋白调节剂的基因突变引起的罕见的先天免疫力,强调了肌动蛋白细胞骨架重塑在维持人类免疫细胞任务中的中心作用。与免疫细胞中一些基于肌动蛋白的过程的特异性一致,某些受影响的基因的表达(例如WAS,ARPC1B和HEM1)仅限于造血室。对这些自然缺陷的探索强调了一个事实,即肌动蛋白重塑的分子控制在髓样和淋巴机免疫细胞的各种子集中明显调节,并维持与大量专业任务相关的不同网络。此外,单个肌动蛋白重塑蛋白的缺陷通常与部分细胞损伤有关,突出了肌动蛋白细胞骨架重塑的可塑性。本综述涵盖了与疾病相关的肌动蛋白调节剂在促进基于肌动蛋白的免疫细胞过程中的作用。它集中于这些调节剂在各种免疫细胞亚群中的特定分子功能,并响应不同的刺激。鉴于仅最近表征了许多与免疫相关的肌动蛋白缺陷的事实,我们进一步讨论了破译基本的病情机制所面临的挑战。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:血糖的测量受到多种约束的影响;在设计电磁非侵袭性传感器时,必须识别和量化这些约束。第二阶段涉及这些约束的影响的水平。在这项工作中,我们研究了前臂中静脉半径对谐振微波传感器的影响,以测量糖血症。我们使用与微波谐振器接触的提议的组织模型的COMSOL多物理进行了数值模拟。其他一些因素会影响测量,例如温度,灌注,传感器定位和运动,组织异质性和其他生物学活性。传感器必须适合上述约束。由于静脉的大小从一个人变为另一个人,因此传感器看到的介电特性会有所不同。在模拟传感器的共振频率中为不同静脉尺寸的谐振频率所产生的变化证明了这一点。评估的第二个约束是剂量法。应评估任何电磁设备的特定吸收率(SAR),并将其与安全标准中的SAR限制进行比较,以确保用户的安全性。模拟结果与安全标准中的SAR限制非常吻合。
建议引用:Würth, Christine (2020):新触觉一代:数字触摸如何影响我们的亲密方式,互联网政策评论,ISSN 2197-6775,柏林亚历山大·冯·洪堡互联网与社会研究所,第 9 卷,Iss。1,第 1-10 页,https://doi.org/10.14763/2020.1.1454
这项研究研究了使用原子层沉积(ALD)来减轻粒子加速器中使用的超导无线电频率内部的多重现象,同时在10个10范围内保留高质量的因子。在任意复杂形状对象上控制膜厚度至原子水平的独特ALD能力使TIN膜电阻率和总电源发射产量(TEEY)从优惠券到设备进行微调。这种控制水平使我们能够充分选择锡膜厚度,该薄膜厚度既可以提供高电阻率,以防止欧姆损失和低圆锥形,以减轻多重损失,以应用感兴趣。这项工作中所述的方法可以缩放到真空中受RF场的其他域和设备,并且对具有自身在电阻性和TEEY值的要求的多重或电子交换过程中敏感。
通过等效电路模型对电池进行建模需要确定其参数。可以通过利用电池对当前脉冲的瞬态响应来完成此确定性(通常称为GitT:Galvanostatic的间歇性滴定技术)。一种经典的方法是首先将开路电压(OCV)和过压分开,然后从后者中提取模型参数。然而,OCV的估计很困难,这可能会导致过电压的错误,尤其是对于诸如Di ti ti ti的缓慢动力学时。我们在这里提出了一种在GITT期间估算OCV的方法,以及一种估算过电压的方法,该方法允许提取与缓慢动力学相关的参数。将提出方法带来的结果与更经典的方法进行了比较。doi:https://doi.org/10.1016/j.est.2022.106199
复杂环境中的限制运动在微生物学中无处不在。这些情况总是涉及流体流,软边界,表面力和波动之间的复杂耦合。在本研究中,使用一种结合全息显微镜和晚期统计推断的新方法研究了这种策略。具体而言,对刚性壁附近的软微米油滴的布朗运动进行了定量分析。所有关键的统计观察物均以高精度重建,从而可以解决局部迁移率的纳米级解决,以及对保守派或非保守力量的推断。引人注目的是,该分析揭示了一种新颖,短暂但大的柔软的棕色力量的存在。后者对于微生物和纳米物理运输,在拥挤的环境中的目标发现或化学反应以及整个寿命机制可能非常重要。