lim激酶,limk1和limk2,已成为开发抑制剂的有希望的靶标,并潜在地治疗多种主要疾病。limk在细胞骨架重塑中起着至关重要的作用,作为Rho-GTPase家族的小G蛋白的下游效应子,以及作为肌动蛋白去聚合因子Cofilin的主要调节剂。在本文中,我们描述了新型四氢吡啶吡咯吡汀limk抑制剂的概念,合成和生物学评估。同源性模型首先是为了更好地说明初步化合物的结合模式并解释生物学活性的差异。产生了60多种产品的文库,并在中低纳莫尔范围内测量了体外酶促活性。然后在Cofilin磷酸化Inhi Bition的细胞中评估了最有希望的衍生物,这导致了52的鉴定,该鉴定在激酶选择性面板中对LIMK表现出极好的选择性。我们还证明了52个通过干扰肌动蛋白丝影响细胞细胞骨架。使用该衍生物使用三种不同细胞系的细胞迁移研究对细胞运动表现出显着影响。 最后,解决了与52复合的Limk2的激酶结构域的晶体结构,从而大大改善了我们对52和Limk2活性位点之间相互作用的概念。 报告的数据代表了开发更有效的肢体抑制剂以用于未来体内临床前验证的基础。使用该衍生物使用三种不同细胞系的细胞迁移研究对细胞运动表现出显着影响。最后,解决了与52复合的Limk2的激酶结构域的晶体结构,从而大大改善了我们对52和Limk2活性位点之间相互作用的概念。报告的数据代表了开发更有效的肢体抑制剂以用于未来体内临床前验证的基础。
纠正了本文:Oncotarget在本文中调查了对重复图像的担忧。在图3中,面板3D中的小管蛋白带是面板3C中H3带的重复。此外,肌动蛋白频带是早期文章的图4C所示的重复,其中包括两位与Oncotarget论文共同的作者[1]。我们还发现了补充图1(三种Lancap细胞系的AR-V7 Western印迹)在[1]的图7C中与WB带重叠。这两篇文章的对应作者Xuesen Dong博士都说:“这些错误的原因是Haolong Li博士同时一直在研究两份出版物(Oncotarget和Cell and Cell and Death and Disey)。每个项目都涉及大量的蛋白质印迹测定;负载控件的所有图像看起来非常相似,并且很容易放错位置。无论如何,这些小错误并没有影响我们得出的结论。”作者提供了原始的Western印迹,上面有校正数字的日期邮票,并指出图3a肌动蛋白(2 h处理),图3D小管蛋白(第二个面板,293T细胞,用质粒编码AR(F876L)转染的293T细胞(F876L)和补充图1 AR-V7 Blot在图组合过程中被放错了。 使用原始数据获得的校正图3和补充图1如下所示。 作者声明这些更正不会改变本文的结果或结论。使用原始数据获得的校正图3和补充图1如下所示。作者声明这些更正不会改变本文的结果或结论。
fi g u r e 2每天调节FADD(A – C)和P-ERK/T-ERK比(D – F)在大鼠脑前额叶前皮层(PFC)(A,D),纹状体(B,E)和Hippocampus(C,F)中。治疗组:Zeitgeber时间(ZT)2,ZT5,ZT8,ZT11,ZT14,ZT17,ZT17,ZT20和ZT23(ZT0,点亮或不活动时期; ZT12; ZT12,Lights-Off或活动期)。有关每个标记的数据点(n)的特定数量和分析时间点的特定数量,请参见表S1。列代表每组N实验的平均值±SD。为每只大鼠显示各个符号。cosinor分析,以评估24小时的节奏性。用两尾学生t检验评估了灯与灯的灯之间的比较。底部面板:为每组实验显示了FADD,β-Actin,p-erk和T-ERK标记的代表性免疫印迹。* p <.05; ** p <.01; *** p <.001; NS:无统计显着性(p> .05)。
fi g u r e 2每天调节FADD(A – C)和P-ERK/T-ERK比(D – F)在大鼠脑前额叶前皮层(PFC)(A,D),纹状体(B,E)和Hippocampus(C,F)中。治疗组:Zeitgeber时间(ZT)2,ZT5,ZT8,ZT11,ZT14,ZT17,ZT17,ZT20和ZT23(ZT0,点亮或不活动时期; ZT12; ZT12,Lights-Off或活动期)。有关每个标记的数据点(n)的特定数量和分析时间点的特定数量,请参见表S1。列代表每组N实验的平均值±SD。为每只大鼠显示各个符号。cosinor分析,以评估24小时的节奏性。用两尾学生t检验评估了灯与灯的灯之间的比较。底部面板:为每组实验显示了FADD,β-Actin,p-erk和T-ERK标记的代表性免疫印迹。* p <.05; ** p <.01; *** p <.001; NS:无统计显着性(p> .05)。
精子发生是一个复杂且严格调节的过程,其中包括精子的增殖,精子分化为精子细胞,生产精子的减数分裂分裂,圆形精子成熟,精子的成熟以及高度专业的成熟精子的精子释放以及释放。这些事件中的任何一个异常都可能导致影响生育能力的精子发生障碍。精子发生障碍可能是由遗传和非遗传因素引起的,其中遗传因素占15%至30%,非遗传学占70% - 85%(O'Flynn O'Brien等,2010; Neto等,2016)。值得注意的是,作为非遗传学的环境因素对于精子发生很重要,因为男性生殖系统,尤其是精子发生似乎对环境危害特别敏感(Vecoli等,2016)。本研究主题包括七个原始文章和一项迷你审查,以增强和扩展我们对这些因素和机制的了解。精子干细胞(SSC)是最原始的生殖细胞,通过自我更新和连续分化为精子细胞,在睾丸中产生精子(Kubota and Brinster,2018),它们通过自我更新和连续分化来维持精子发生。Wu等人的研究。发现GPX3调节人类SSC的增殖和凋亡。作者表明,GPX3在人类SSC中高度表达,其敲低抑制了细胞增殖。此外,GPX3与CXCL10相互作用,并且它们的敲低表型在人类SSC系列中是一致的。结果表明GPX3和CXCL10对于SSC自我更新至关重要。有一些关于外部环境因素对SSC自我更新和分化的影响的研究。先前的研究表明,缺氧对SSC的增殖有益(Morimoto等,2021)。在此研究主题中,Gille等人。研究了缺氧如何影响SSC的增殖和分化。作者证明,当O2张力≤1%时,SSC显示出轻微的分化偏置和增殖的减少,这与Morimoto等人的结果一致。(2021)。减数分裂过程中发生了几个重要事件,包括DNA复制,染色质冷凝,DSB形成和DSB修复。这些事件不是减数分裂的独家,并且发生在体细胞周期中,并且已证明核肌动蛋白与这些事件有关。但是,没有研究来阐明核肌动蛋白和减数分裂之间的关系。在此研究主题中,Petrusová等。提供了一个迷你审查,以阐明核肌动蛋白在预言I
摘要:本文旨在记录超分子复合物(如马达、泵和时钟 ATPase)中的能量转换和调节相互作用。使用自旋标记电子顺磁共振 (EPR) 光谱通过运动和距离测量来表征动力学和结构特征。特别是,我们重点研究了肌球蛋白 ATPase 与肌动蛋白-肌钙蛋白-原肌球蛋白、神经驱动蛋白 ATPase 与微管、P 型离子动力 ATPase 和蓝藻时钟 ATPase。最后,我们描述了各种能量转换系统的分子机制之间的关系或共同原理,以及柔性元件从一种状态到另一种状态的大规模热结构转变如何先于随后的不可逆化学反应。
摘要扩张的心肌病(DCM)是心力衰竭的常见原因。ttn是DCM的代表性致病基因,主要作为截断变体呈现。但是,在健康个体中也发现了TTN截断变体,因此评估每个变体的致病性很重要。在这项研究中,我们分析了一名男性日本患者的67个心肌病相关基因,该患者因复发性严重心力衰竭而住院,并确定了一种新型的截断变体TTN SER17456ARG FS*14。此TTN截断变体位于A波段区域。此外,患有心力衰竭的患者的母亲具有相同的变体,而父亲和没有心力衰竭的兄弟并没有带有这种变体。检查与截断变体相关的功能变化,对H9C2细胞进行了基因组编辑,以生成具有同源截断变体的细胞。使用全反击甲酸分化细胞,发现骨骼肌肌动蛋白和心肌动蛋白的mRNA表达分别增加和减少,与DCM或心力衰竭患者的已知变化一致。相比之下,用作对照的另一个带有Titin截断变体的细胞显示与心力衰竭相关的基因没有变化。总而言之,我们在家族性DCM患者中发现了一种新型的TTN截断变体,并使用相对简单的细胞模型证实了其功能变化。新型截断变体被确定为致病性和致病突变。(int heart j Advance出版)关键词:基因组编辑,心力衰竭
皮肤定殖。sa产生多种细菌毒素,其中发现δ-毒素可诱导肥大细胞的脱生。肥大细胞的脱粒可以增强细菌清除率和免受未来SA感染的保护,但会导致特应性皮炎加剧。因为剩是确定δ-毒素如何触发脱粒,所以我们研究了δ-毒素诱导的鼠骨髓衍生培养的肥大细胞的变化。我们发现,可以将δTOXIN诱导的脱粒化分为两个阶段,即早期的Ca 2 +独立依赖性和Ca 2 +依赖性相。最近的研究表明,含有3个含3的受体家族,含3的吡啶结构域参与了肥大细胞的脱粒化,从而增加了δ-毒素诱导的K +的泄漏可能与Ca 2 +独立相有关。然而,尽管Ca 2 +非依赖性的脱粒保持不变,尽管在高浓度的K +的情况下,δ-毒素诱导的Ca 2 + -in降解和δ-毒素诱导的脱粒显着抑制。由于据报道肌动蛋白去聚合会在不存在Ca 2 +的情况下在透化大鼠腹膜肥大细胞中诱导脱粒化,因此此处观察到的纤维化肌动蛋白量的缓慢但稳定的降低可能与Ca 2 +二氧蛋白相关的Ca 2 +独立的脱粒作用。我们的发现为鉴定δ-毒素的靶受体奠定了道路。尽管人类中的MAS相关G蛋白偶联受体(MRGPR)X2和MRGPRB2在小鼠中被认为是负责免疫球蛋白E非依赖性的脱脂型的受体,但MRGPRB2- / - MAST中的MRGPRB2-MAST中的Δ-toxosin诱导的脱氧蛋白诱导的脱粒物保持不变。
AAV adeno-associated virus AAV5 adeno-associated virus serotype 5 AAVRh74var adeno-associated virus serotype Rh74var ABR annualized bleeding rate AE adverse event ALT alanine aminotransferase AST aspartate aminotransferase BEQVEZ fidanacogene elaparvovec BLA biologics license application BMI body mass index CAG chicken beta ‐ actin CDRH Center for Devices and Radiological Health CI confidence interval CMC chemistry, manufacturing, and controls CSA chromogenic assay EEP efficacy evaluation period FIX clotting factor IX FIX:C circulating levels of FIX LTFU long-term follow-up nAb neutralizing antibody NI non-inferiority OSA one-stage assay PI package insert PMC postmarketing commitment PMR售后需求Pro患者报告的结果REMS风险评估和缓解策略RP常规预防SAE SAE严重不良事件SD标准偏差teae teae exter-everermergerement Extress Eversem forverse Everse uln USPI USPI USPI USPI美国处方信息VG矢量基因组的上限
物理术语,细胞膜 - 皮层系统和细胞孔埃顿的组合构成了一种机械系统,其稳定性基于压缩和拉伸负荷组件之间的力平均值。[1]这种细胞机械系统的任何物理扰动都会引起力量的重新分布和可能具有破坏性的机械元素的重排。[3]因此,多种化学药物用于改变细胞机械性能的靶向多种化学药品并不奇怪。抗癌药物(例如紫杉醇或秋水仙碱)会影响微管,引起有丝分裂灾难会导致细胞死亡。[4,5]其他化合物,包括细胞切拉斯蛋白B,细胞切拉斯蛋白D和LATRUNCULIN A DES肌动蛋白丝,也会干扰细胞功能和生长。[6]
