目前,淋巴瘤的治疗已经进入了精密医学时代,CD30作为跨膜蛋白,已成为帮助诊断和制定淋巴瘤治疗计划的重要标志。该蛋白在各种类型的淋巴瘤中广泛表达,可以通过核因子K B(NF-K B),有丝分裂原激活的蛋白激酶(MAPK)和其他途径发挥作用,并最终导致CD30表达的上调,从而使肿瘤细胞具有生存优势。brentuximab vedotin(BV)作为靶向CD30的抗体 - 药物缀合物(ADC),是CD30+淋巴瘤患者中最明显提高生存率的首批新药之一。但是,CD30的生物学功能尚未完全阐明。因此,本综述强调了CD30介导的肿瘤促进机制和调节CD30表达的分子因子。我们希望对CD30生物学有更好的了解将为临床治疗提供新的见解,并改善淋巴瘤患者的生存和生活质量。
摘要冠状病毒疾病(Covid-19)是最近发现的冠状病毒引起的一种传染病。该病于2019年底首次在中国武汉报道,已导致171万人全球死亡,感染超过7700万。疾病的常见症状包括发烧,干咳嗽和疲劳。本文献综述旨在总结以下主题:审查对9次COVID-19疫苗进行的临床试验,并通过疫苗临床开发过程的三个阶段进行疗效和作用方式。分析通过三个试验遵循单个疫苗,检查和分析了提取的结果,以确定其含有严重的急性呼吸综合征(SARS-COV-2)的能力。四种COVID-19疫苗已被批准用于世界各地,许多其他疫苗都在临床试验1、2和3中使用。总而言之,在临床试验中,这些疫苗在不久的将来为与Covid-19作斗争提供了巨大的希望。
摘要简介:抗癌药物是全球药物不良反应 (ADR) 负担中的重要一环。任何量化其严重程度并提供最新知识的尝试都将有助于肿瘤学家开出更安全的处方。目的:这项观察性随访研究针对接受抗癌治疗的新诊断癌症患者进行,旨在确定 ADR 的频率、严重程度、因果关系、可预测性和可预防性。受试者和方法:对患者进行 6 个月的随访,以了解不良事件的发生情况。使用 IBM SPSS Statistics for Windows,版本 22.0。(纽约州阿蒙克)分析数据,并以描述性统计的形式呈现。结果:每位患者平均被开具约 6.85 ± 1.51(平均值 ± 标准误差)种药物。所有接受抗癌化疗的患者(100%)均出现 ADR。脱发、恶心呕吐、灼热刺痛和麻木是最常见的 ADR。女性脱发 ( P < 0.0004)、恶心 ( P < 0.03) 和口腔溃疡 ( P < 0.02) 的发生率较高。最高反应为 2 级 (69.53%)。大多数反应 (75.80%) 出现在接受第一个周期的 10 天内。99.58% 的反应并不严重。根据世界卫生组织 - 乌普萨拉监测中心的标准,99.47% 的 ADR 属于可能类别。根据 Naranjo 算法,100% 的 ADR 属于很可能类别。大约 94.80% 的反应被发现是可预测的。大约 56.47% 的反应可能是可以预防的,43.53% 的反应是无法预防的。结论:在新诊断的癌症患者中出现了多种 ADR。其中大多数是可预测的、严重程度轻度至中度的、不严重的且可以预防的。大多数 ADR 会随着时间的推移而恢复。
摘要 光标、头像、虚拟手或工具以及其他渲染的图形对象使用户能够与 PC、游戏机或虚拟现实系统等计算机进行交互。我们从用户的角度在“用户表征”的统一概念下分析这些不同对象的作用。这些表征是虚拟对象,它们人为地延伸了用户的身体,使他们能够通过执行不断映射到其用户表征的运动动作来操纵虚拟环境。在本文中,我们确定了一组与不同用户表征相关的概念,并对用户表征的控制和主观体验背后的多感官和认知因素进行了多学科回顾。这些概念包括视觉外观、多模态反馈、主动感、输入法、近体空间、视觉视角和身体所有权。我们进一步为这些概念提出了研究议程,这可以引导人机交互社区从更广泛的视角了解用户如何通过他们的用户表征进行感知和交互。
因此,下一个提到的结果遵循。基于通过实验测量左手和右手拇指运动过程中大脑电活动获得的EEG信号,我们获得了用于训练集合随机森林算法的输入和输出数据,该算法是通过Scikit-Learn库的软件工具实现的。使用Joblib库的软件工具,可以通过将N_JOBS HyperParameter的值设置为-1时在物理内核和计算机流程上训练集合的随机森林算法时并行化计算。基于DASK库的软件工具,将并行计算分布在群集计算机系统的物理核心及其流中,这使得组织高性能计算以训练集合随机森林算法。结果,根据质量指标:准确性,ROC_AUC和F1评估了创建算法,软件 - 硬件计算管道的质量。所有这些一起制作
[1] A. Molla和P. S. Licker,“电子商务系统的成功:试图扩展和重新定位DeLone和Maclean Model的成功,” J。Electron。commer。res。,卷。2,不。4,pp。131-141,2001。[2] L. T. Khrais,“智能城市发展中的物联网和区块链”,《国际高级计算机科学与应用杂志》,第1卷。11,否。2,2020。[3] A. S. Sikder,“区块链授权的电子商务:在孟加拉国的数字市场中重新定义信任,安全性和效率。:授权区块链的电子商务,”《国际科学技术杂志》,第1卷1,否。1,pp。216-235,2023。[4] K. L. Kraemer,J。Dedrick,N。P。Melville和K. Zhu,全球电子商务:国家环境与政策的影响。剑桥大学出版社,2006年。[5] L. T. Khrais和O. S. Shidwan,“面对破坏性技术,移动商务及其在相关适用领域的不断变化”,《国际应用工程研究杂志》,第1卷。15,否。1,pp。12-23,2020。
本文研究了不同的用户界面(UI)设计如何影响用户对生成人工智能(AI)工具的信任。我们采用了OZ方法的向导来测试具有不同UI CHATGPT不同UI变化的三种工具的信任水平的实验。来自不同学科的九名志愿大学学生参加了会议。我们使用问卷来评估参与者与每个工具进行交互后以及与所有工具进行交互后对信任的看法。结果表明,参与者之间的信任水平受生成AI的UI设计的影响,尤其是Avatar设计和文本字体。尽管共享相同的文本源,但大多数参与者还是将CHATGPT评为最值得信赖的工具。结果还强调了对话界面在使用生成AI系统建立信任中的重要性,参与者表达了偏爱促进自然和引人入胜的互动的接口。该研究强调了UI对信任的重大影响,并旨在鼓励对生成AIS的更谨慎的信任。
摘要在线第二语言教学近年来蓬勃发展,在技术能力和COVID-19大流行导致的教学方式的强迫变化的帮助下。这种转变强调了互动在在线教育学中的关键作用。研究表明,增加学生与讲师之间互动的机会增加对于培养第二语言获取(SLA)至关重要。但是,很少有研究量化在线语言教学中的不同类型的相互作用的产生,尤其是在经验丰富的讲师中。本研究利用互动主义框架对在线西班牙语课程中的互动进行定量分析,并根据互动启动类型进行分类:指导者提出的参与(IPP),未提出的口头参与(UOP),未提及的文本参与(UTP),即聊天(即,聊天的时间段)(即,均一次的范围)(即及时的范围),并在展示范围(ever),并在展示范围(即及格)。这些转弯)。数据包括在英国一所远程学习大学中跨越熟练的LEV ELS和课程类型的同步L2西班牙语教学的视频记录。课程类型包括语法研讨会和考试准备。结果表明,在线语言课程中的互动模式受熟练程度和课程类型的影响。较低的熟练度学生更频繁地从事互动程序,而参与扩展话语的能力取决于Spe cific活动/课程类型。这项研究有助于解决除英语(Lote)以外的LAN Guages的互动和语言教学研究的缺乏。
