摘要:在这项研究中,我们开发了一种热存储介质,其中包括充满有机相位变化材料(PCM)的多孔活性炭,该碳利用相变的潜热在冷却过程中吸收热量和释放热量。对于活化的碳,我们同时使用了基于木炭的粉状活性炭(250-350均)和颗粒状活性炭。实验中使用的有机相变材料是十二烷,三烷,四烷和五烷。材料特性,例如导热率,潜热和熔融温度范围,结果观察到结果是一致的。还评估了所提出的培养基的周期性热性能。值得注意的是,用有机PCM的混合物填充活化的碳导致最高的温度调节作用。这项研究中提出的程序和结果有望进一步改善含有稳定温度的PCM的热储存介质的性能,包括建立加热和冷却。
1.2. REM 的相图。获取 REM 相图的一个简单方法是使用微正则系综。对于给定的样本,即对于 2 N 能量 E ( C ) 的给定实现,让 N ( E ) 表示能量在区间 ( E, E + δE ) 内的配置数(我们选择 δE 小于 N ,但不小于 N 的指数级)。显然,样本中 N ( E ) 的平均值是 ⟨N ( E ) ⟩ = 2 NP ( E ) δE 。然后,由于能量是独立的,对于典型样本 N ( E ) ≃⟨N ( E ) ⟩,在 ⟨N ( E ) ⟩≫ 1 的能量范围内(即当 | E/N | < J √ log 2 时),有且有 N ( E ) = 0,在 ⟨N ( E ) ⟩≪ 1 的范围内。这立即告诉我们基态能量为 E GS /N = − J √ log 2,并且在 | E | /N < J √ log 2 范围内的熵由 S ( E ) = N log 2 − E 2 / ( NJ 2 ) 给出。在此范围之外,没有能级(对于典型样本),因此 S ( E ) = −∞ 。综上所述,
摘要 随机过程理论影响着物理和社会科学。在分子尺度上,由于热波动,随机动力学无处不在。福克-普朗克-斯莫鲁霍夫斯基方程模拟了扩散区域中选定自由度的概率密度随时间的变化,因此它是物理化学中的主力。在本文中,我们报告了变分量子特征值求解器的开发和实现,以解决福克-普朗克-斯莫鲁霍夫斯基特征值问题。我们表明,这种通常用于解决量子化学问题的算法可以有效地应用于经典系统,为量子计算机的新应用铺平了道路。我们计算了具有最近邻相互作用的线性转子链中的构象转变速率。我们提供了一种在量子计算机上对链的给定构象的概率分布进行编码的方法,并评估了其在操作方面的可扩展性。对小链的噪声量子模拟器和量子设备(IBMQ Santiago)进行了性能分析,结果显示无需进一步添加任何错误缓解技术,与经典基准结果一致。
摘要:本研究旨在评估机械分解活性污泥 (WAS) 对全规模厌氧消化的影响,同时考虑获得正能量平衡的可能性。结果表明,分解所用能量密度 (ε L ) 的增加伴随着污泥中有机化合物的释放增加(SCOD 从 ε L = 0 kJ/L 时的 211 ± 125 mg O 2 /L 增加到 ε L = 180 kJ/L 时的 6292 ± 2860 mgO 2 /L)。其中一些是挥发性脂肪酸。分解的 WAS 百分比份额也被记录为影响沼气生产效率的关键参数。该参数值从 25% 增加到 100%,即使在分解所用的 ε L 低得多的情况下(因此从污泥絮凝物中释放的有机化合物量要少得多),也会导致沼气产量增加。在 ε L 30 kJ/L 下对流向发酵罐的整个 WAS 流进行分解,可使沼气产量增加 14.1%。这样的盈余将允许生产大约 360 kWh/d 的净电力。因此,浓缩 WAS 的机械分解可能是一种经济合理的强化厌氧污泥稳定化策略。
摘要:本研究旨在评估机械分解活性污泥 (WAS) 对全规模厌氧消化的影响,同时考虑获得正能量平衡的可能性。结果表明,分解所用能量密度 (ε L ) 的增加伴随着污泥中有机化合物的释放增加(SCOD 从 ε L = 0 kJ/L 时的 211 ± 125 mg O 2 /L 增加到 ε L = 180 kJ/L 时的 6292 ± 2860 mgO 2 /L)。其中一些是挥发性脂肪酸。分解的 WAS 百分比份额也被记录为影响沼气生产效率的关键参数。该参数值从 25% 增加到 100%,即使在分解所用的 ε L 低得多的情况下(因此从污泥絮凝物中释放的有机化合物量要少得多),也会导致沼气产量增加。在 ε L 30 kJ/L 下对流向发酵罐的整个 WAS 流进行分解,可使沼气产量增加 14.1%。这样的盈余将允许生产大约 360 kWh/d 的净电力。因此,浓缩 WAS 的机械分解可能是一种经济合理的强化厌氧污泥稳定化策略。
摘要:本研究论文探讨了用于高性能锂离子电池的多孔活性炭阳极的复杂领域,以满足对先进储能系统日益增长的需求。研究首先深入研究各种合成方法,包括物理和化学活化以及混合方法,旨在优化孔隙率和表面化学。对结构特征的详细研究包括表面积、孔分布、形态和表面化学。先进的显微镜技术和表征工具提供了对结构特征和电化学性能之间复杂相互作用的洞察。走出实验室,本文探讨了多孔活性炭阳极的潜在应用。在电动汽车中,这些阳极有望提高能量和功率密度,这是广泛采用电动交通的关键因素。对于便携式电子设备,重量轻和安全性提高使其成为有吸引力的选择。此外,该研究评估了将多孔活性炭阳极集成到电网规模储能中的可行性,有助于提高可再生能源整合的稳定性和可靠性。解决了环境问题,评估了多孔活性炭阳极的可持续性和可回收性。本文最后总结了主要发现,强调了多孔活性炭在推进锂离子电池技术方面的重要性,并提出了未来的研究方向以克服当前的挑战。大量的参考文献强调了该研究的跨学科性质,结合了多种来源,提供了该领域的全面概述。关键词:电池技术、形态、显微镜、多孔、活性、可再生。1.简介:随着世界向可持续能源解决方案转型,锂离子电池 (LIB) 在为电动汽车、可再生能源存储和便携式电子设备提供动力方面发挥着关键作用。传统阳极材料(例如石墨)在容量、循环稳定性和倍率能力方面受到限制。多孔活性炭源自多种前体,由于其高表面积、可调节的孔隙率和出色的导电性,为解决这些挑战提供了一种创新的解决方案。这些本研究的第一部分深入研究了花生壳活性炭的制备和开发,强调了多级多孔结构的创建。同时,该研究提出了一种从食物垃圾碎屑生物质中生产食物垃圾活性炭(FAC)的可扩展方法,重点介绍了其物理化学特性和多级多孔形态。
针对 T 细胞上的共刺激或共抑制受体的免疫疗法已成为多种癌症类型的重要治疗选择,目前正在探索几种分子如 TIM3 1 、TIGIT 2 、GITR 3 、VISTA 4 、LAG3 5 或 ICOS 6 以评估其抗肿瘤能力。然而,至关重要的是,大多数这些靶标都受到“靶上/细胞外”效应的影响,因为肿瘤组织中的效应 T 细胞和调节性 T 细胞亚群都可以表达高水平的这些分子。因此,我们最近表明,肿瘤内表达 PD-1 的滤泡调节性 T (T FR ) 细胞是抗 PD-1 治疗效果的关键决定因素,并且抗 PD-1 疗法可以激活此类抑制性细胞,从而抑制治疗效果 7 。与此一致,已证明肿瘤微环境 (TME) 中表达 PD-1 的 CD8 + T 细胞和 T 调节 (T REG ) 细胞的平衡是预测抗 PD-1 治疗效果的关键生物标志物 8 。此外,我们 9,10
抽象目标白介素(IL)-40是与免疫系统功能和恶性肿瘤有关的新细胞因子。最近,发现了IL-40与类风湿关节炎(RA)和中性粒细胞外陷阱(Netosis)的外部化的关联。作为中性粒细胞与RA发展有关,我们在RA(ERA)的早期阶段研究了IL-40。方法IL-40在基线幼稚的患者(n = 60)的血清中确定(n = 60),以及在传统治疗和健康对照组开始后的3个月(HC; n = 60)。ELISA测量了IL-40,细胞因子和Netosis标记的水平。通过免疫荧光可视化Netosis。在ERA患者的外周血中性粒细胞上进行体外实验(n = 14)。在血清和上清液中分析了无细胞的DNA。与HC相比(P <0.0001),ERA的血清IL-40升高,并在治疗3个月后归一化(P <0.0001)。基线血清IL-40与类风湿因子(IGM)(p <0.01)相关,抗循环柠檬粉的肽(P <0.01)自身抗体和脂肪抗体标志物(蛋白酶3;蛋白酶3;中性粒细胞酶(Ne)(NE);髓质氧化酶酶;骨髓氧化酶酶(Myeloperoxidase酶)(P <0.0.000101)。NE水平在治疗后显着降低(P <0.01),并且与血清IL-40的降低相关(P <0.05)。在体外,嗜中性粒细胞增强了Netosis诱导后的IL-40分泌(P <0.001)或暴露于IL-1β,IL-8(P <0.05),肿瘤坏死因子或脂多糖(P <0.01)之后。重组IL-40上调节的IL-1β,IL-6和IL-8(所有人的P <0.05)体外。因此,IL-40可能在时代发挥作用。结论我们表明,在血清阳性时代,IL-40显着上调,并在常规治疗后减少。此外,中性粒细胞是RA中IL-40的重要来源,其释放是由细胞因子和Netosis增强的。
目前,基于时期的晚期氧化过程由于其在去除水性培养基的某些持续污染物(染料,氯和氮和氮的有机化合物29-33)方面引起了很多关注。与传统的氧化剂(例如过氧化氢和硫酸盐)相比,Pe-ryodates具有热稳定性,对于存储和运输32。氧化的主要缺点是其高选择性。这降低了含有不同类别的有机量的废水处理的效率。时期主要用于氧化具有阴影基(–OH,–CHO,= CO或–COOH)的化合物,以醛或酮的结构34。激活时期以降低周期氧化的选择性。区分了以下周期激活方法:通过紫外线辐射(光解)35-37,光催化激活38、39,热激活40、41,在美国领域的激活(SON解析)42、43,Microwaves 44,由Microwaves 44,由Microwaves 44,由氢Perogy Perox-indience及其构造29–3-31,通过Transe-29-3-3-3-3-3-3-19-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3 ,通过金属纳米颗粒48-50,碳基材料51,52。
1. 引言 活性炭是一种具有高表面积和孔隙率的碳质材料。它来源于碳含量较高的富碳有机前体,例如煤、聚合物或生物质,在高温下对这些材料进行物理或化学活化以增加碳含量[1]。换句话说,活性炭是通过热分解碳含量较高的富碳有机材料获得的。文献中明确定义活性炭是通过富碳有机材料的物理或化学活化获得的[2]。简而言之,物理活化可以通过单阶段[3]或两阶段[4]过程进行。在常用的两阶段过程中,富碳材料的碳化是在惰性气氛中的反应器中实现的,然后使用CO 2 、蒸汽、空气或它们的混合物进行活化以增加表面积和孔隙率[5]。化学活化工艺是一个单阶段工艺,其中将碳质材料与活化剂(例如氢氧化钾、磷酸和氯化锌)混合,然后在惰性气氛下施加高温获得活性炭 [1]。其目的是通过使用任一活化工艺来合成高表面积和高孔隙率的活性炭材料。
