过氧化物酶体增殖激活受体 γ (PPAR γ ) 属于核受体家族,可作为脂质传感器。PPAR γ 是一组称为噻唑烷二酮 (TZD) 的胰岛素增敏剂的靶点,这些药物可调节参与葡萄糖和脂质代谢的基因以及调节其他组织代谢功能的脂肪因子的表达。非酒精性脂肪性肝病 (NAFLD) 在世界范围内患病率很高,在肥胖和胰岛素抵抗患者中患病率甚至更高。TZD 介导的 PPAR γ 激活可以作为 NAFLD 的良好治疗方法,因为 TZD 在体外表现出抗纤维化和抗炎作用,并增加外周组织的胰岛素敏感性,从而改善肝脏病理。然而,小鼠模型中的机制研究表明,肝细胞中 PPAR γ 的激活可能会降低或限制 TZD 对 NAFLD 的治疗潜力。在本综述中,我们简要介绍了 PPAR 亚型的简史、它们在不同组织中的表达相关性以及 NAFLD 的发病机制和潜在治疗方法。我们还讨论了一些来自小鼠模型的证据,这些证据可能有助于内分泌学家评估 PPAR 的组织特异性作用、补充逆向内分泌学方法,并了解 PPAR γ 在肝细胞和非实质细胞中的直接作用。
关节软骨(AC)一旦损坏,修复的能力较差,进行性变性通常会导致骨关节炎(OA)。虽然AC原产质的额外细胞基质(ECM)制造的生物材料显示了修复局灶性AC缺陷的有望,但由于较大的支架机械性能,并且缺乏病因细胞中的软骨剂,必须克服几个挑战,以修复较大的负载缺陷。在这里,我们开发了一种方法来通过结合可生物吸收的3D印刷增强框架,并递送促肌抑制性基因以浸润干细胞增强软骨生成并产生更健康的AC的透明组织。对可生物吸收的多丙酮酸(PCL)3D印刷框架进行表面处理以改善其亲水性,并用于增强胶原蛋白透明质酸(CHYA)基质。然后,将机械加固的SCAF-折叠与软骨成生成转录因子Sox9进行基因激活(GA),该因子与使用糖胺聚糖结合增强的转换(GET)系统相结合的非病毒纳米粒子(NP),然后与人类Mesenchy-Malsenchy-malsensal stromsal(Hmsc)(HMSc)相结合。在软骨培养基中培养28天后,与基因自由对照相比,GA型夫人的HMSC沉积了更有指示健康透明软骨的ECM。SOX9在Ga支架上的mRNA表达是高于对照的2个磁性磁性词,而Sox9(Col2α1,Acan)的下游软骨靶标也表现出明显更高的mRNA水平。在GA支架上,促核ECM蛋白(例如COL2)的表达高(P = 0.0018),这也导致硫酸糖胺聚糖(SGAG)的产生和空间分布增强,这对健康AC的功能至关重要。总而言之,这些发现提供了证据表明,具有SOX9 NP的3D印刷仿生型促肌发育性支架的功能增强了人类干细胞在这种机械增强的支架上产生的ECM的质量。
被称为“延伸药”,“生物可逆的衍生物”和“同源物”。5,6自1970年代初以来,这种方法已改善了癌症药物治疗。7通常由药物和一个与形成非活性底物相关的化学部分组成。用特定的生物学培养基(例如阿司匹林)或以更具针对性的方式激活后,通过进行特定的生化转化的酶,在体内释放活性药物以释放活性药物以发挥其治疗作用。碳水化合物是在体内发现的最丰富的大莫尔 - cule,并且在许多细胞相互作用(例如信号传导或细胞表面受体)中起关键作用。8由于癌细胞的快速增殖,存在高能需求。发现在癌细胞中过表达的葡萄糖转运蛋白(GLUTS),通过比正常细胞更高的葡萄糖增加葡萄糖的摄取来解决问题,这一现象称为“ warburg ectect factect”。9,这种影响受到科学界的关注,以设计和开发基于糖的靶向药物输送。10也已广泛报道说,各种糖苷酶在不同的癌症类型中过表达(见表1)。例如,在包括乳腺癌,11胃12和肝脏在内的许多癌症中,B-葡萄糖苷酶在许多癌症中被上调。13可以通过使用糖苷酶激活的前药来利用这种过表达来靶向许多不同的癌症。绝大多数基于碳水化合物的前药旨在改善药代动力学特性。,(图它们在水,低毒性和高生物相容性中表现出很高的溶解度。已经显示出几种细胞毒性剂,例如Glufosf- amide,Chlorambucil,Docetaxel,3-Paclitaxel等1)已被糖基化,发现对非癌细胞的毒性比亲本aglycons毒性小。35个肿瘤相关的碳水化合物抗原(TACA)是特定靶标,因此也被认为是癌症检测的良好生物标志物。它们对于基于碳水化的癌症疫苗至关重要,以改善免疫学
一家安全,健康与环境研究所,胡志明市,越南B纳里技术开发公司有限公司,南京,江苏210012,中国c供水,卫生与环境工程部,伊尔德尔特水供应,卫生与环境工程系泰米尔纳德邦632014,印度E环境健康研究中心,库尔德斯坦医学科学研究所,库尔德斯坦库尔德斯坦省库尔德斯坦省库尔德斯坦省72m2 mhq,伊朗应用科学学院72m2 mhq越南 *通讯作者。电子邮件:nguyentanphong@tdtu.edu.vn
抗生素是最常开处方的药物,已广泛用于预防或治愈人类和兽医疾病,无疑导致大量释放到下水道网络和废水处理系统中,这是一种热点,其中抗生素转化的发生和转化。细胞外聚合物物质(EPS),通过微生物活性分泌的生物聚合物,在细胞粘附,养分保留和毒性耐药性中起重要作用。然而,与抗生素的耐药性和去除相关的污泥EP的潜在作用尚不清楚。这项工作总结了最先进的微生物EPS的组成和物理化学特征,突出了EPS在去除抗生素中的关键作用,评估其在不同的抗生素暴露下的防御性能,并分析可能影响抗抗生素的吸附和生物转化行为的典型因素。接下来,分析了微生物EPS与抗生素抗性基因之间的相互作用。未来的观点,尤其是微生物EPS在抗生素毒性检测和防御方面的工程应用也受到了强调。©2022作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
增加的CO 2输出引起了极大的关注,CO 2吸附是一种高效捕获和利用这种温室气体的方法。在这项研究中,自然丰富的粘土土壤是否有可能应用作为CO 2捕获吸附剂的潜在应用。用磷酸(H 3 PO 4 -s)激活粘土土壤样品,以增加其纹理特性,尤其是其表面积和孔体积。这项工作包括有关土壤中二氧化碳吸附剂的酸激活过程的见解及其在固体吸附系统中的前瞻性用途。基于土壤的吸附剂的特征是X射线粉末衍射(XRD),Brunauer,Emmett和Teller(BET)和傅立叶变换红外(FTIR)光谱。用H 3 PO 4激活后,土壤的BET表面积增加到60.32 m 2 /g,这是未处理的土壤的两倍(23.39 m 2 /g)。微孔体积值; H 3 PO 4 -s(0.14 cm 3 /g)微孔体积值是未经处理的土壤(0.07 cm 3 /g)的两倍。这些增强的纹理特性允许更大的能力捕获和存储CO 2分子。与未经处理的土壤相比,H 3 PO 4 -S吸附剂获得了10.60 mg/g的吸附能力,酸处理的土壤的性能提高了16%。指实验发现,活化的土壤作为吸附剂显示出CO 2吸附能力的增长,进一步支持其作为有效的碳捕获吸附剂的潜力。关键字:CO 2吸附;化学激活;酸治疗;吸附剂
一般没有针对此产品的特定曝光标准。对于没有特定职业暴露标准的固体物质的灰尘: - 安全工作澳大利亚暴露标准(滋扰灰尘):8小时twa = 10 mg/m3(以无法造成的灰尘测量)。- 新西兰WES(没有其他分类的微粒):TWA = 10 mg/m3; twa = 3 mg/m3(可吸入的灰尘)。为工人提供的无效水平(DNEL): - 吸入(短期,局部效应):3毫克物质/m3。- 吸入(长期,全身效应):3毫克物质/M3。组件:二氧化硅 - 晶体,石英(CAS No.14808-60-7): - 安全工作澳大利亚曝光标准(可呼吸灰尘):TWA = 0.5 mg/m3;已知具有人类的致癌潜力(carc。1a)。- 新西兰的工作场所暴露标准[通过2019]:TWA = 0.05 mg/m3(可呼吸灰尘);已知或假定的人癌(致癌1类)。
摘要:有丝分裂原激活的蛋白激酶(MAPK)途径对于细胞增殖,生长和存活至关重要。通过BRAF突变对该途径的本构激活会导致激酶的下游激活,从而导致不受控制的细胞生长和癌变。因此,抑制BRAF和下游底物MEK已被证明可有效控制肿瘤的生长和增殖。在过去的十年中,已经研究了几种BRAF和MEK抑制剂,从主要是黑色素瘤到具有BRAF促成的各种癌症。随后,这导致了BRAF/MEK抑制剂的多个食品和药物管理(FDA)批准,用于黑色素瘤,非小细胞肺癌,肿瘤性甲状腺癌,结肠癌,组织细胞增多症,肿瘤性肿瘤,最后是Tumor-agnosticatic指示。在这里,这项全面的审查将涵盖BRAF和MEK抑制剂从黑色素瘤到肿瘤反应的适应症,新颖的药物,挑战,未来方向以及这些药物在个人医学中的重要性。
患有 APDS 的个体的所有后代都有 50%(二分之一)的机会遗传异常基因并受到该疾病的影响。每次怀孕的风险都相同,因此计划生育是一项重要的考虑因素,建议进行遗传咨询。确诊患有 APDS 的人的所有家庭成员都应接受基因检测。虽然家庭成员可能没有相同的症状或任何症状,但他们仍可能携带遗传疾病并将其遗传给他们的亲生子女。
