老龄化社会的需求提出了在日常情况下机器人支持人类的希望。对于这些辅助机器人,与用户自然通信的功能能力至关重要。但是,当前对话系统中使用的最先进技术远远不令人满意。对于使用这些技术的机器人选择适当的动作,例如朝橱柜移动或在听到命令“带给我杯子”时,这不是一件容易的事。房屋内部可以有许多候选杯子,并且需要将其移交给用户的特定杯子根据情况而不同。例如,它可能与准备一顿饭菜或被清除的一顿饭有关。出于实际原因,服务机器人采用的大多数对话管理机构是言语(用户的话语)和非语言(例如,视觉,运动和背景)的信息。使用这些机制,当机器人处理发音时,情况和以前的经历都没有考虑到,因此它可能会执行用户没有想象的动议。在这项研究中,当机器人由于识别误差而执行不良运动时,我们将“运动失败”定义为发生的。这项研究的目的是减少失败的风险。专注于语言理解与运动之间的关系,我们不处理成功识别用户命令的情况,但执行的运动最终导致了不良的结论。考虑一个机器人成功识别命令“选择对象”的情况,但是机器人在尝试捡起时未能掌握指定的对象。
用于金属零件制造的增材制造 (AM) 因其灵活性和工艺能力而获得了越来越多的市场份额。AM 似乎特别适合小批量生产,例如高度定制的零件(例如,手术植入物中使用的假体)或原型。在这种情况下,电弧增材制造 (WAAM) 是一种能够以分层方式生产三维组件的工艺。WAAM 属于直接能量沉积技术 1 。通过专用头部选择性沉积熔融金属来创建层。原材料以金属丝的形式进料,并通过电弧的加热作用熔化 2 。 WAAM 的优势在于:(i)可实现的构建速度明显高于基于激光的增材工艺(50-130 克/分钟 vs. 2-10 克/分钟)3 ,以及(ii)可以生产更大的部件(1000-2000 毫米 vs. 300-600 毫米)4 。与其他基于粉末的 AM 工艺相比,WAAM 的主要缺点是尺寸精度和特征分辨率降低 5 。因此,WAAM 在经济上方便,适用于
锂离子电池(LIB)已成为绿色经济过渡的重要技术,因为它们被广泛用于便携式电子,电动汽车和可再生能源系统中。固体电解质中相(SEI)是LIB的正确操作,性能和安全性的关键组成部分。SEI源于阳极 - 电解质界面的最初热量稳定性,所得的电解质还原产物通过形成电化学缓冲窗口稳定界面。本文旨在使第一个(但很重要)步骤,以增强广泛使用的反应力场(RAEXFF)的参数化,以确保对LIBS中SEI成分的精确分子动力学(MD)模拟。为此,我们专注于氟化锂(LIF),这是一种非常感兴趣的无机盐,这是由于其在钝化层中的有益特性。该协议在很大程度上依赖于各种python库,该库旨在与原子模拟一起使用,允许对所有重新聚体步骤进行强有力的自动化。所提出的配置集和所得数据集,允许新的Reaxff恢复无机盐的固体性质,并改善MD模拟中的质量传输属性预测。优化的REAXFF通过准确调节固体晶格中锂的扩散性,从而超过了先前可用的力场,从而在室温下预测的两阶提高了两阶数字。然而,我们对模拟的全面研究表明,Reaxff对训练集的敏感性很强,从而使其能够插入势能表面具有挑战性。因此,可以通过利用提出的互动重新聚体化协议来构建数据集,从而有效地利用RAEXFF的当前表述来建模特定且定义明确的现象。总体而言,这项工作代表了精确的反应性MD模拟迈克斯的重要第一步,阐明了Reaxff力场参数化的挑战和局限性。所证明的局限性强调了通过我们的交互式重新聚集协议开发更通用和先进的力场来提高仿真的潜力,从而实现了将来更准确,更全面的MD模拟。
sof umer洞穴是一个未开发的极端环境,可容纳新型微生物和潜在的遗传资源。来自洞穴的微生物组已被遗传适应以产生各种生物活性代谢产物,使它们能够生存并耐受苛刻的结合。然而,尚未探索Sof umer Cave微生物中与生物合成相关的基因簇标志。因此,使用高通量shot弹枪测序来探索sof umer Cave的微生物组中与生物合成相关的基因簇(BGC)。Geneall DNA土壤迷你试剂盒用于从均质样品中提取高分子量DNA,并使用Novaseq PE150对纯化的DNA进行测序。根据微-RN数据库,乌默洞穴中最常见的微生物属是原细菌,静脉细菌,verrucomicrobobiota和蓝细菌。对与生物合成相关的基因簇进行了注释并分类,并使用抗石和NAPDOS1预先对BGC进行预令。确定了编码广泛的二级代谢物的BGC的460个推定区域,包括RIPP(47.82%),萜烯(19.57%),NRPS(13.04%),杂种(2.18%)和其他新的注释(10.87%)com punds。此外,NAPDOS管道还从链霉菌素的链霉菌素(链霉菌素基因肌链霉菌素)中鉴定出钙依赖性的抗生素基因簇,来自链霉菌Chrysomallus的放线菌素基因簇和来自链霉菌链霉菌的博霉素基因簇。这些发现突出了Sof Umer Cave微生物组的未开发的生物合成潜力,以及其发现天然产物的潜力。
带有轨道角动量(OAM)的涡流梁对于高容量通信和超分辨率成像具有重要意义。但是,芯片上的自由空间涡旋(FVS)和等离子涡旋(PVS)之间存在巨大差距,而主动操纵以及更多的通道中的多路复用已成为紧迫的需求。在这项工作中,我们演示了由螺旋等离子元素层,液晶晶体(LC)层和螺旋介质元素层组成的Terahertz(THZ)级联的MetadeVice。通过旋转轨道角动量耦合和光子状态叠加,PV和FV的平均模式纯度平均产生超过85%。由于螺旋跨面的反转不对称设计引起的,实现了OAM的均衡对称性破裂(拓扑电荷数不再以正面和负为正面发生,但所有这些都是正面的),产生了6个与脱钩的旋转状态和近距离/远距离位置相关的6个独立通道。此外,通过LC集成,可以实现动态模式切换和能量分布,最终获得多达12个模式,调制比率高于70%。这种主动调整和多渠道多路复用元点在PVS和FVS之间建立了桥梁连接,在THZ通信,智能感知和信息处理中显示出有希望的应用。
最初是公共场所:Werhahn,Julia E; Smigileski,卢克斯; SACU,SEDA;穆尔,苏珊娜; Wirelinger,David;没事,吉利;母亲,Le-Andra M; Glennon,Jeffrey C; Firstra,Peter J; Dietrich,Andrea;拖延,蕾妮·斯莫尔; Acgregin,Pascal M;霍尔兹(Holz),纳西(Nathie E);京,莎拉; Banaschewski,Tobias; Sume,Melanie C; Schulze,Ulrike M e; Lythgo,David J; Sethi,Arjun;克雷格,迈克尔; Mastroiani,数学; Sagar-Ouryhli,伊利亚斯; Santush,Paramaa J;罗莎,米雷亚;巴尔加罗,努里亚; Castro-Fornis,Josefina; Arango,Celso; Penzol,Maria J; Switch,Marcel P;弗兰克斯,巴拉拉;通常,Jan K;苏珊(Susanne)沃尔兹(Waltza);丹尼尔·布兰奇(Brange)(2023)。不同的全脑功能连通性相关性或儿童和青少年白人破坏性行为的反应性侵略性和死亡的反应性特征。神经图像:临床,40:103542。doi:https://doi.org/10,1016/j.nicl
在以前所未有的数字复杂性为标志的时代中,赛景观景观正在以惊人的速度发展,挑战了传统的防御范式。高级持续威胁(APTS)揭示了常规安全措施中的内在漏洞,并强调了迫切需要对连续,适应性和积极主动的策略,这些策略将人类的洞察力与尖端的AI技术无缝整合在一起。本手稿探讨了代理AI和Frontier AI的融合如何通过重新建立网络框架(例如网络杀戮链),增强威胁性智能过程以及将强大的道德治理嵌入在AU的响应系统中。借鉴了现实世界的数据和前瞻性观点,我们研究了实时监控,自动化事件响应以及永久学习在锻造稳定,动态的防御生态系统中的作用。我们的愿景是将技术创新与坚定不移的道德监督协调,以确保促进AI-Drienden的安全解决方案坚持公平,透明和问责制的核心人类价值,同时反对新兴的网络威胁。
特刊“交互式学习:为主动人机交互的循环系统设计中的人类设计”已经扩展了!潜在的主题:认知负载 - 可以使用模型来调整决策。应该预培训(即,为普通用户学习),而应进行交互或个性化的数量(即,对特定用户进行微调)?响应设计和相互作用的方式 - 使用自然/隐式反馈信号,例如自然语言,语音,眼动,面部表情和互动过程中的手势。有效的相互作用 - 速度和相互作用数量。人类的偏好或内部奖励是非平稳的,并且会随着时间的流逝而变化。限制可能是由于缺乏信任,可用性和生产力,尤其是在适应不可预见的阶级和任务环境中的变化时。特定的系统体系结构 - 问题和机器学习应用程序;人类信任问题不同的建筑问题。案例研究 - 例如,GIS中的图像分割和区域数字化之类的案例研究是可取的。
高水平的炎性细胞因子诱导神经毒性并催化浮力驱动的神经变性,但是来自小胶质细胞的特定释放机制仍然难以捉摸。在这里,我们表明分泌自噬(SA)是囊泡货物分泌自噬的非悠久模态,可通过SKA2和FKBP5信号来调节神经蛋白 - 流量介导的神经变性。SKA2通过抵消FKBP5功能来抑制SA依赖性IL-1β释放。海马SKA2在雄性小鼠中敲低过度激活SA,从而导致神经蛋白肿瘤,随后的神经变性和六周内完全的河马萎缩。SA的过度激活增加了IL-1β的释放,导致了炎症前喂养的恶性循环,包括NLRP3插入式浮膜激活和Gasdermin d介导的神经毒性,最终导致神经变性。是由男性和雌性人类大脑的蛋白质表达和共免疫沉淀分析的结果表明,SA在阿尔茨海默氏病中被过度激活。总体而言,我们的发现表明,SKA2调节的,多动的SA促进了神经蛋白 - 浮动,并与阿尔茨海默氏病有关,从而提供了对神经素浮肿生物学的机械洞察力。
Taubert的1.2 |恩格尔·巴斯蒂安1.2 | Dieldelhorst Jana 1.2 | Katharina L. Hupa-Breton 1.2 |帕特里克·贝伦特(Patrick Behrendt)1.2.3.4 | Niklas T.篮子5 | Kurt-WolframSühs6 | Macel K. Janik 2.7 | Zachou Callopy 8.9 |武术sebode 2.10 |克里斯托弗示意图2.10.11 |玛丽亚 - 卡洛特(Maria-Carlot)2.12 | Sarah Habes 13 |英国 - 艾希联盟| Ye H. OO 2:14.15 | Lalanne 16 Lalanne | Simon Pape 2.17 | Schubert Maen 18 |迈克尔·赫斯特18 | StefanDübel18 | Mario Thevis 19 | Danny Jonik 20 | Julia Beimdici 21 | Falk F. R. P. H. Drive 2.17 | Muratour 16 | David H. Adams 2:14.15 |杰西卡·戴森(Jessica K. Dyson)22.23 | Amedee Renand 24 | Isabel Graupara 2.12 | Ansgar W. Lohse 2.10 |乔治·N·送货8.9 | Milkiewicz出生2.7.25 |马丁·斯坦格6 |本杰明1.2 | Witte 5 | Heiner Wedemeyer 1.2 |迈克尔·P·曼斯1.2 | Elmar Jaeckel 1.2.26Taubert的1.2 |恩格尔·巴斯蒂安1.2 | Dieldelhorst Jana 1.2 | Katharina L. Hupa-Breton 1.2 |帕特里克·贝伦特(Patrick Behrendt)1.2.3.4 | Niklas T.篮子5 | Kurt-WolframSühs6 | Macel K. Janik 2.7 | Zachou Callopy 8.9 |武术sebode 2.10 |克里斯托弗示意图2.10.11 |玛丽亚 - 卡洛特(Maria-Carlot)2.12 | Sarah Habes 13 |英国 - 艾希联盟| Ye H. OO 2:14.15 | Lalanne 16 Lalanne | Simon Pape 2.17 | Schubert Maen 18 |迈克尔·赫斯特18 | StefanDübel18 | Mario Thevis 19 | Danny Jonik 20 | Julia Beimdici 21 | Falk F. R. P. H. Drive 2.17 | Muratour 16 | David H. Adams 2:14.15 |杰西卡·戴森(Jessica K. Dyson)22.23 | Amedee Renand 24 | Isabel Graupara 2.12 | Ansgar W. Lohse 2.10 |乔治·N·送货8.9 | Milkiewicz出生2.7.25 |马丁·斯坦格6 |本杰明1.2 | Witte 5 | Heiner Wedemeyer 1.2 |迈克尔·P·曼斯1.2 | Elmar Jaeckel 1.2.26