摘要:移动飞机控制面的动力已从手动产生(由飞行员通过杆和连杆传输)发展到电传输(通过电线)以操作控制面执行器。已经开发了各种液压、电磁和机电结构来提供必要的动力并保持预期的冗余度。过去几十年来,已经提出了许多飞机执行器系统设计,但尚未进行全面的审查。这篇评论论文旨在通过对为各种飞机开发的执行器系统设计进行严格的审查来填补这一空白。审查重点是飞机执行器系统设计,即:电液执行器系统、机电执行器系统和冗余执行系统中的力对抗效应。审查中严格分析和讨论了每个执行器系统的意义和工作原理。本文还评估了提出的解决力或扭矩总和架构中的力对抗均衡(或力对抗取消)的解决方案。本文还讨论了飞机执行器系统中冗余执行器系统发展的未来趋势,以减少力对抗效应。
摘要:航空航天业越来越多地采用机电驱动系统,因此需要可靠的诊断和预测方案来确保安全运行,尤其是在关键的安全关键系统(例如主飞行控制)中。此外,如果在预测性维护框架中实施预测方法,则可以提高系统在生命周期内的可用性,从而降低成本。在本文中,将介绍一种已经提出的算法的改进,该算法的范围是预测机电执行器中电机的实际退化状态,并提供温度估计。该目标是通过使用适当处理的反电动势信号和简单的前馈神经网络来实现的。可以以较小的误差实现对电机健康状况的良好预测。
入学要求 • 成功完成机电一体化或密切相关领域的学士学位 • 学习结束时必须达到 A2 语言水平,通过 DIT 的德语课程 A2 / 第 3+4 部分或获得 DIT 认可的证书即可。 • 如果您的本科学位是在《里斯本公约》非成员国完成的,建议提交 GATE 或 GRE(普通)证书,以进一步证明您有资格参加此学习计划。 • 需要进行能力评估
DOWSIL™ ME-1190 粘合剂 透明 可喷射分配;高模量 3,500 370 D 59 7.4 130°C/1 小时 喷射 DOWSIL™ ME-1180 粘合剂 透明 可喷射分配;良好的应力消除效果 5,600 23.4 A 81 5.5 130°C/1 小时 分配;喷射 DOWSIL™ ME-1070 粘合剂 黑色 高触变性;高粘合强度 37,000 12.2 A 74 11.0 150°C/0.5 小时 印刷;分配 DOWSIL™ 7920-LV 芯片粘接粘合剂 可喷射分配;高粘合强度 22,000 7.2 A 68 9.0 150°C/1 小时 分配;喷射
20世纪的机器人系统是用僵硬的材料制成的,该领域的许多开发项目都越来越准确,充满活力的机器人,这些机器人在工业自动化环境中蓬勃发展,并且可能会在未来几十年中继续这样做。但是,21世纪的机器人遗产很可能会成为软机器人的遗产。这个新兴域的特征是连续软结构,同时履行机器人链路和机器人执行器的作用,其中主要重点是机器人硬件的设计和制造而不是软件控制以实现所需的操作。这些机器人预计将在经典机器人失败的精致任务中扮演重要角色,例如在微创手术,主动的假肢和涉及微妙不规则物体的自动化任务中。这些机器人开发的核心是制造软动力器以产生运动。本文回顾了一种由加压流体驱动的一种特别有吸引力的软执行器。由于技术从更好的仿真工具和新的制造技术推动,包括软光刻和添加剂制造,另一方面,这些执行器一方面获得了大量的吸引力,另一方面是从上面列出的应用程序中提取的市场。本文概述了不同的高级软执行器配置,其设计,制造和应用。
软机器人是为了解决传统机器人在处理人和精密生物物品时的局限性而创建的。[1-4] 软气动执行器(SPA)的工作原理是将调节的正压或负压注入柔性结构内的密封腔中。这些执行器可以弯曲、扭曲、伸展或收缩。[5] 执行器对施加压力的反应取决于腔体的材料和形状。执行器的几何形状或多材料分布可以在更广泛的意义上得到改进。软执行器和机器人的自主设计可能受益于优化壁厚和改变腔体结构。由于软机器人固有的柔顺性,软执行器可以产生相对被动的变形,并根据被处理的物体的形状进行修改。[6] 因此,腔体对弯曲和驱动的影响对于增强软执行器的能力至关重要。此外,有限元法 (FEM) 还可用于改进软机器人,预测其运动,并消除制造后出现的问题。[7] 人们已经采用了各种各样的新开发来提高软机器人的效率,并且已经使用了许多新设计来实现软机器人执行器的多功能性和增强的适应性。[8 – 13]
自 1964 年 Werner Riester 和 Rudolf Dinse 创立公司以来,我们一直专注于开发、制造和销售电动执行器,以提供卓越的工程服务。凭借我们的开拓精神和对市场需求的清晰感知,我们已成长为全球技术领导者。我们的产品因其长寿命、可靠性和最高精度而受到客户的青睐。
应用。 [3] 然而,尽管取得了这些进展,这些执行器要实现大输出力和高重量标准化工作能力(以下称为“工作能力”)仍然具有挑战性。 [4] 这是因为组成材料较软且体积有限,难以储存和释放高机械能。 [2d,5] 目前,大多数微型软执行器的工作能力相对较低,在 10 –3 至 10 2 J kg − 1 范围内(图 S1,支持信息),[3b,6] 这使得它们无法用于潜在的医疗器械、操作和其他需要高工作能力的应用。 [7] 此外,现有磁控软执行器的最大输出力约为 60 µN。然而,许多医疗程序,如支架植入术 [8] 要求装置的输出力超过 1 N,这约为磁控软执行器最大输出力的 10软气动执行器同时提供了高机械性能和柔顺性,使其在强力操控中得到了广泛的应用。[9] 具体而言,尽管杨氏模量较小(约为 10 kPa),但这些执行器可以提供高工作能力(9 J g-1),比大多数已报道的执行器的性能高出约 10 1 –10 3 倍。尽管形状记忆合金具有类似的工作能力,但它是执行器的 10 6 倍
通过进化而完善的设计已为仿生动物机器人提供了灵感,它们可以模仿猎豹的运动和水母的柔顺性;生物混合机器人更进一步,将生物材料直接融入工程系统。仿生和生物混合带来了新的、令人兴奋的研究,但人类一直依赖生物材料——来自生物体的非生物材料——因为他们的早期祖先穿着动物皮作为衣服,用骨头作为工具。在这项工作中,一只无生命的蜘蛛被重新用作一个随时可用的执行器,只需一个简单的制造步骤,开创了“死机器人”领域,其中生物材料被用作机器人组件。蜘蛛独特的行走机制——依靠液压而不是拮抗肌对来伸展腿部——产生了一个死机器人夹持器,它自然处于闭合状态,可以通过施加压力打开。死灵机器人抓手能够抓取不规则几何形状的物体,抓取重量可达自身重量的 130%。此外,抓手可用作手持设备,并可在户外环境中伪装。死灵机器人可进一步扩展,以整合来自其他生物的生物材料,这些生物具有类似的液压机制,可用于运动和关节活动。
设计以植物为导向的执行器为创建新型设备的机会提供了一个机会,例如在物理结构中体现这些品质的机器人。生长和衰减的植物杆型植物构成了生物体固有的不可预测和逐渐转换,并提出了一种直接性,响应,控制,准确性和耐用性的设计原理的替代方法。为了探讨这一点,我们为植物驱动的机器人执行器提供了原始设计空间。概念证明原型幻觉如何将诸如缓慢变化,缓慢运动,衰减和破坏之类的概念纳入机器人形式中。我们描述了为机器人构建植物驱动的辅助器所需的设计注意事项,包括有关植物力的机械性能的实验性fndings。最后,我们推测
