主动振动控制应用中使用的执行器可以通过利用面板结构中的弯曲或剪切应变或直接线性驱动来产生应变。面板减振应用包括抑制直升机和螺旋桨飞机机身、飞机机翼、变压器外壳和管道中的机身振动。结构构件应用包括桁架式结构中的减振、主动悬架和机翼中的主动颤振抑制。除了这些应用之外,精密主动构件还可用于结构形状修改。虽然产生剪切的执行器在减少面板和其他低负载应用中的振动方面非常有效,但大多数负载应用都是使用主动构件型组件进行的。此外,为了使这些系统性能良好,这些执行器需要在宽频带宽内运行。
随着强大的稀土磁性材料的发展,机电执行器变得更轻更紧凑。数字电机控制器的出现进一步推动了这一发展,数字电机控制器允许直流电机以极高的位置精度和速度控制运行,而无需使用换向器电刷。去除换向器电刷可大大提高电机寿命。这些变化已使航空业从液压驱动转向机电驱动。液压执行器在其最简单的形式中是所有执行器组件中零件数量最少的执行器组件之一。通常,液压执行器的物料清单将包含 10 到 20 个零件,而机电执行器的物料清单则包含 30 到 40 个零件。然而,在确定执行器的功能可靠性时,必须考虑整个系统。在这个过程中,液压驱动的弱点暴露无遗。通常,对于液压飞机应用,将有: 一个液压泵
• 完整的兼容传感器、执行器和附件系列,提供完整的系统解决方案,可与气动和电动执行器接口,为新建筑和改造应用提供低成本安装 • 通过 GX-9100 软件工具进行图形配置,可轻松连接流程图模块以获得所需的控制顺序 • 内置本地状态显示,使用方便 • 密码和趋势日志功能选项(第 1 部分,共 2 部分)应用模块
故障机电执行器 (EMA) 数据集的质量和稳健性对于加强此类系统的飞机预测数据分析至关重要。主要飞行表面控制执行器尤其令人感兴趣,因为缺乏已知故障数据会削弱对组件和随后的子系统健康预测的信心。为了协助这项研究,我们设计和建造了一个 EMA 测试台,以帮助预测故障执行器相对于其正常执行器的寿命和磨损特性。在飞行实验期间将故障注入执行器,同时记录执行器参数,然后在地面进行后处理。本文对当前 EMA 测试台设计的可用性和可靠性进行了评估。利用现场类似组件的性能历史,本文特别展示了影响测试系统设计和故障数据质量的测试台设计方面。这项研究旨在验证测试台设计,并提供设计建议,以提高测试台的可用性和提供高质量和稳健的故障数据集的能力。 *
摘要 软机器人因其固有的柔软性和柔顺性而受到越来越多的关注。然而,要充分发挥其潜力,通常需要许多软部件和执行器。大型系统面临的一个主要挑战是集成和小型化。此外,对于气动控制的执行器,多路复用对于减少控制阀的管道至关重要。通过在软材料 (PDMS) 中嵌入两层交互式通道 (2 n ) 来形成执行器 (n 2 ),通过在通道交叉点处累积行程和力,实现了仅通过 2 n 个控制信号对 n 2 个交叉点进行多路复用控制的小型化软气动执行器矩阵 (SPAM),这与产生恒定力的基于活塞的串联耦合气弹簧不同。研究了一种具有 2×4 个控制信号的 4×4 执行器的 SPAM 原型。在倾斜矩阵中演示了 SPAM,并在气动软传送带中使用两个耦合的 SPAM 进行平面操作。它的简单性和尺寸使其未来能够大规模集成到软机器人中。
故障机电执行器 (EMA) 数据集的质量和稳健性对于加强此类系统的飞机预测数据分析至关重要。主要飞行表面控制执行器尤其令人感兴趣,因为缺乏已知故障数据会削弱对组件和随后的子系统健康预测的信心。为了协助这项研究,我们设计和建造了一个 EMA 测试台,以帮助预测故障执行器相对于其正常执行器的寿命和磨损特性。在飞行实验期间将故障注入执行器,同时记录执行器参数,然后在地面进行后处理。本文对当前 EMA 测试台设计的可用性和可靠性进行了评估。利用现场类似组件的性能历史,本文特别展示了影响测试系统设计和故障数据质量的测试台设计方面。这项研究旨在验证测试台设计,并提供设计建议,以提高测试台的可用性和提供高质量和稳健的故障数据集的能力。*
2.2.1 生物机电系统基础 ................................................................................................ 6 2.2.2 生物传感器 ................................................................................................................ 9 2.2.3. 执行器 ................................................................................................................ 14 2.2.4. 信号调节和处理设备 ............................................................................................ 15
故障机电执行器 (EMA) 数据集的质量和稳健性对于加强此类系统的飞机预测数据分析至关重要。主要飞行表面控制执行器尤其令人感兴趣,因为缺乏已知故障数据会削弱对组件和随后的子系统健康预测的信心。为了协助这项研究,我们设计和建造了一个 EMA 测试台,以帮助预测故障执行器相对于其正常执行器的寿命和磨损特性。在飞行实验期间将故障注入执行器,同时记录执行器参数,然后在地面进行后处理。本文对当前 EMA 测试台设计的可用性和可靠性进行了评估。利用现场类似组件的性能历史,本文特别展示了影响测试系统设计和故障数据质量的测试台设计方面。这项研究旨在验证测试台设计,并提供设计建议,以提高测试台的可用性和提供高质量和稳健的故障数据集的能力。*
