本文介绍了一种高效设计量子点细胞自动机 (QCA) 电路的新方法。所提方法的主要优点是减少了 QCA 单元的数量,同时提高了速度、降低了功耗并增大了单元面积。在许多情况下,需要将特定中间信号的效应加倍。最先进的设计利用一种扇出来实现这些,从而增加了单元数量,消耗了更多功率并降低了电路的整体速度。在本文中,我们介绍了单元对齐,以将某个信号的效果乘以二、三甚至更多。这可以被视为设计任何需要此属性的任意电路的新视角。此外,还介绍了一种新的共面交叉方法,该方法能够在两个连续时钟内进行共面交叉,最坏情况下需要一个旋转单元。为了证明所提想法的有效性,我们设计了一个新的全加器单元和一个新的进位纹波加法器(4 位),它提供更少的 QCA 单元数量以及更低的功耗和成本。
摘要:加法是数字计算机系统的基础。本文介绍了三种基于标准单元库元素的新型门级全加器设计:一种设计涉及 XNOR 和多路复用器门 (XNM),另一种设计利用 XNOR、AND、反相器、多路复用器和复合门 (XNAIMC),第三种设计结合了 XOR、AND 和复合门 (XAC)。已与许多其他现有的门级全加器实现进行了比较。基于对 32 位进位纹波加法器实现的广泛模拟;针对高速(低 V t )65nm STMicroelectronics CMOS 工艺的三个工艺、电压和温度 (PVT) 角,发现基于 XAC 的全加器与所有门级同类产品相比都具有延迟效率,甚至与库中可用的全加器单元相比也是如此。发现基于 XNM 的全加器具有面积效率,而基于 XNAIMC 的全加器在速度和面积方面与其他两种加法器相比略有折衷。I. 简介二进制全加器通常位于微处理器和数字信号处理器数据路径的关键路径中,因为它们是几乎所有算术运算的基础。它是用于许多基本运算(如乘法、除法和缓存或内存访问的地址计算)的核心模块,通常存在于算术逻辑单元和浮点单元中。因此,它们的速度优化对于高性能应用具有巨大的潜力。1 位全加器模块基本上由三个输入位(例如 a、b 和 cin)组成并产生两个输出(例如 sum 和 cout),其中' sum'指两个输入位'a'和'b'的总和,cin 是从前一级到这一级的进位输入。此阶段的溢出进位输出标记为“ cout ”。文献 [1] – [10] 中提出了许多用于全加器功能的高效全定制晶体管级解决方案,优化了速度、功率和面积等部分或所有设计指标。在本文中,我们的主要重点是使用标准单元库 [11] 中现成的现成组件实现高性能全加器功能。因此,我们的方法是半定制的,而不是全定制的。本文主要关注逻辑级全加器的新颖设计,并从性能和面积角度重点介绍了与许多其他现有门级解决方案的比较。从这项工作中得出的推论可用于进一步改进晶体管级的全加器设计。除此之外,本文还旨在提供教学价值的附加值。本文的其余部分组织如下。第 2 节介绍了 1 位二进制全加器的各种现有门级实现。第 3 节提到了三种新提出的全加器设计。第 4 节详细介绍了模拟机制和获得的结果。最后,我们在下一节中总结。
• Bypass capacitor placement – Place near the positive supply terminal of the device – Provide an electrically short ground return path – Use wide traces to minimize impedance – Keep the device, capacitors, and traces on the same side of the board whenever possible • Signal trace geometry – 8mil to 12mil trace width – Lengths less than 12cm to minimize transmission line effects – Avoid 90° corners for signal traces – Use an unbroken ground plane在信号迹线下方 - 带有地面的信号迹线周围的洪水填充区域 - 对于超过12厘米的迹线•使用阻抗控制的迹线•源 - 端端使用输出附近的串联阻尼电阻器•避免分支;缓冲信号必须单独分支
tmohanrao2020@gmail.com 摘要:乘法器在信号处理和基于 VLSI 的环境应用中起着关键作用,因为与其他设备相比,它消耗更多的功耗和面积。在实时应用中,功率和面积是重要参数。乘法器是必不可少的组件,因为与任何其他元件相比,它占用较大的面积并消耗更多的功耗。我们有很多加法器来设计乘法器。在本文中,使用金字塔加法器,它使用半加器和全加器来提高速度并减少乘法器中使用的门数量,但延迟并没有显着减少。如果我们用 XNOR 和 MUX 代替普通的半加器和全加器来修改金字塔加法器,那么与普通的 16 位加法器相比,这种金字塔加法器使用的门更少,延迟也更少。金字塔加法器中 XNOR 和 MUX 的使用减少了延迟,因为 MUX 功能仅在输入中选择输出。使用这种金字塔加法器可以大大减少乘法器延迟。关键词:MUX,FPGA,DSP,加法器,2.1块,2.2块
免责声明本报告是作为美国政府机构赞助的工作的帐户。均未对任何信息,明示或暗示的任何雇员或官员,也没有任何雇员或官员,也不是任何雇员或官员,也不承担任何法律责任或责任,对任何信息的准确性,完整性或有效性,包括任何信息,设备,产品或过程所披露或代表其使用不属于私有权利。 以此处参考任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或对其任何代理机构的认可,建议或偏爱。 本文所表达的文件作者的观点和观点不一定陈述或反映美国政府或其任何代理机构,Argonne National Laboratory或Uchicago Argonne,LLC。均未对任何信息,明示或暗示的任何雇员或官员,也没有任何雇员或官员,也不是任何雇员或官员,也不承担任何法律责任或责任,对任何信息的准确性,完整性或有效性,包括任何信息,设备,产品或过程所披露或代表其使用不属于私有权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或对其任何代理机构的认可,建议或偏爱。本文所表达的文件作者的观点和观点不一定陈述或反映美国政府或其任何代理机构,Argonne National Laboratory或Uchicago Argonne,LLC。
CMS-A-CC-1-1-TH:数字逻辑核心课程1:理论:04学分:60小时集成电路:(5小时)双极逻辑系列:DTL,TTL Not Gate,TTL NAND NAND NAND GATE,TTL NAND NON GATE,TTL NON GATE,TTL NOR GATE,TTL NON GATE,OPEN COLLECTOR,FANOR,fan-in-fan-in,fan,Out; MOS Logic Families: NMOS, PMOS, CMOS, SSI, MSI, LSI and VLSI classification Number Systems : (5 hours) Weighted and Non-Weighted Codes, positional, Binary, Octal, Hexadecimal, Binary coded Decimal (BCD), Gray Codes, Alphanumeric codes, ASCII, EBCDIC, Conversion of bases, Parity bits, Single Error bit detection and校正代码:锤击代码,固定和浮点算术:加法,减法,乘法和除法。Boolean Algebra: (8 hours) Fundamentals of Boolean Expression: Definition of Switching Algebra, Basic properties of Switching Algebra, Huntington's Postulates, Basic logic gates (AND, OR, NOT), De- Morgan's Theorem, Universal Logic gates (NAND, NOR), Minterm, Maxterm, Minimization of Boolean Functions using K-Map up-to four variables, Two level and multilevel使用逻辑门实现,简化逻辑表达式。组合电路:(20小时)一半加法器,完整加法器(3位),半减法器,全部减法器(3位)以及使用基本逻辑大门(OR和,不是)和通用逻辑门(NAND&NOR)(NAND&NOR),Multibit Adder-ripple-ripp-ripp-cruction-nourter corral and and and and and bcd aDder,bcd adder a adder a adder a dractor bcd adder a adder a dracter,bcd adder a adder,1 and and and and and and and bcd adder a adder a adder a adder,1 1位,2位,3位和4位比较器使用基本逻辑门。数据选择器 - 多工器:扩展(级联),还原,功能实现,通用函数实现,多功能实现。
本研究尝试设计全加器中的高性能单壁碳纳米管 (SWCNT) 束互连。为此,使用 HSPICE 软件中的仿真研究了电路性能,并考虑了 32 纳米技术。接下来,使用田口方法 (TA) 分析了几何参数(包括纳米管直径、束中纳米管之间的距离以及束的宽度和长度)对全加器中 SWCNT 束互连性能的影响。田口灵敏度分析 (TSA) 的结果表明,束长度是影响电路性能的最有效参数(约占功率耗散的 51% 和传播延迟的 47%)。此外,与其他参数相比,纳米管之间的距离对响应的影响很大。此外,响应面法 (RSM) 表明,增加互连长度 (L) 会提高功率耗散的输出。随着互连线宽度 (W) 和碳纳米管直径 (D) 的增加,功耗也增加。减小束中碳纳米管之间的距离 (d) 会导致功耗增加。如果考虑互连线长度和宽度 (L、W) 以及碳纳米管直径 (D) 的参数的最大值以及束中碳纳米管之间距离 (d) 的最小值,则功耗最高。结果还表明,互连线长度 (L) 的增加会增加传播延迟。最后,报告了最佳参数,并使用不同方法 (TA 和 RSM) 比较了优化系统的性能。结果表明,用不同方法预测的全加器中 SWCNT 束互连线最优设计的性能差异小于 6%,根据工程标准是可以接受的。
该项目由美国能源部(DOE)水力技术办公室(WPTO)资助,并由其Hydrowires倡议提供,并由由Argonne National Laboratory(Argonne)领导的五个DOE国家实验室组成的合作组织。除Argonne外,项目团队成员还包括爱达荷州国家实验室(INL),国家可再生能源实验室(NREL),橡树岭国家实验室(ORNL)和太平洋西北国家实验室(PNNL)。项目团队与Absaroka Energy and Rye Development合作,其提议的抽水储存水电(PSH)项目(由Rye Development和哥本哈根基础设施伙伴通过Absaroka Energy和Goldendale的Banner Mountain),由DOE WPTO通过技术援助(NOTA)流程的通知而选择。对于这两个项目,项目团队进行了各种技术经济研究,以评估其潜在服务和对电网的贡献的价值。建立了一个技术咨询小组(TAG),以向项目团队提供建议和建议。标签包括网格运营组织,公用事业公司拥有和运营PSH工厂,PSH开发人员,设备制造商,咨询公司,行业研究组织,监管机构和其他利益相关者的专家。以下专家以标签成员的身份参加了该项目:
DAM Day-Ahead Market EEA Energy Emergency Alert EOC Energy Offer Curve ERCOT Electric Reliability Council of Texas ERS Emergency Responsive Service HCAP High System-Wide Offer Cap HSL High Sustained Limit LCAP Low System-Wide Offer Cap LOLP Loss of Load Probability MCL Minimum Contingency Level NFRC Non-Frequency Responsive Capacity Non-Spin Non-Spinning Reserve ORDC Operating Reserve Demand Curve PBMCL Probability of Reserves Falling Below the Minimum Contingency Level PNM Peaker Net Margin PRC Physical Responsive Capability PUCT Public Utility Commission of Texas QSE Qualified Scheduling Entity QSGR Quick-Start Generation Resources RTM Real-Time Market RTOFFCAP Real-Time Off-Line Capacity RTOFFPA Real-Time Off-Line Reserve Price Adder RTOLCAP Real-Time On-Line Capacity RTORDPA Real-Time On-Line Reliability Deployment Price Adder RTORPA Real-Time On-Line Reserve Price ADDER RUC可靠性单元承诺SWCAP SWCAP范围内提供损失负载的上限VOLL值