图 1. NAD + 生物合成和补救。生物体 NAD + 来自饮食前体来源,以蓝色矩形背景表示。NAD + 前体通过犬尿氨酸(黄色)和 Preiss-Handler(橙色)生物合成途径流动或被纳入补救途径(灰色)。大部分细胞 NAD + 来自补救途径。NAD + 被 PARP 和 sirtuins 等酶作为底物(补救途径中的星号)消耗。KYNU、HAAO 和 NADSYN1 基因的功能丧失突变(编码生物合成途径中的酶)导致 NAD + 耗竭和 CNDD。
HOMA-IR BASELINE A 1.4 (0.8, 2.1) 1.8 (1.5, 2.5) 1.6 (1.2, 1.9) 1.8 (1.1, 2.7) 0.159 Homa-IR δ 60 c* 0.7 (1.4) 0 (1.5) 0.4 (0.9) 0.7 (1.2) 0.765 NAD BASELINE (NMOL/L) at 6.2 (4.7, 9.3) 7.5 (5.6, 14) 7.5 (5.6,8.8)7.5(6.1,13.2)0.588NADδ30(NMOL/L)C 1.7(10.6)18(20.4)31.1(12.1)32.7(15.3)<0.0001NADΔ060(NADδ60(NMOL/L)C 3.7(NMOL/L)C 3.7(8.1)C 3.7(8.1)20.8(8.1)20.8(22.2)20.8(22.2)37。37.10.9.9.9.(10)1.9>(10)1.9 evectectemHOMA-IR BASELINE A 1.4 (0.8, 2.1) 1.8 (1.5, 2.5) 1.6 (1.2, 1.9) 1.8 (1.1, 2.7) 0.159 Homa-IR δ 60 c* 0.7 (1.4) 0 (1.5) 0.4 (0.9) 0.7 (1.2) 0.765 NAD BASELINE (NMOL/L) at 6.2 (4.7, 9.3) 7.5 (5.6, 14) 7.5 (5.6,8.8)7.5(6.1,13.2)0.588NADδ30(NMOL/L)C 1.7(10.6)18(20.4)31.1(12.1)32.7(15.3)<0.0001NADΔ060(NADδ60(NMOL/L)C 3.7(NMOL/L)C 3.7(8.1)C 3.7(8.1)20.8(8.1)20.8(22.2)20.8(22.2)37。37.10.9.9.9.(10)1.9>(10)1.9 evectectem
S. Haihua Chu,Daisy Lam,Michael S Packer,Jenny Olins,Alexander Liquori,Kyle Rehberger,Conrad Rinaldi,Jeffrey Marshall,Calvin Lee,Bo Yan,Bo Yan,Jeremy Decker,Jeremy Decker,Bob Gantzer,Scott Haskett,Scott Haskett,Tanggis Bohnuud,David Born,David born born barr barr,luiis,luuis,luuis。 Slaymaker,Nicole Gaudelli,Sarah Smith,Adam Hartigan和Giuseppe CiaramellaS. Haihua Chu,Daisy Lam,Michael S Packer,Jenny Olins,Alexander Liquori,Kyle Rehberger,Conrad Rinaldi,Jeffrey Marshall,Calvin Lee,Bo Yan,Bo Yan,Jeremy Decker,Jeremy Decker,Bob Gantzer,Scott Haskett,Scott Haskett,Tanggis Bohnuud,David Born,David born born barr barr,luiis,luuis,luuis。 Slaymaker,Nicole Gaudelli,Sarah Smith,Adam Hartigan和Giuseppe Ciaramella
利益竞争:加州大学董事会已获得和正在申请 CRISPR 技术专利,JAD 和 GJK 是这些技术的发明者。JAD 是 Caribou Biosciences、Editas Medicine、Scribe Therapeutics 和 Mammoth Biosciences 的联合创始人。JAD 是 Caribou Biosciences、Intellia Therapeutics、eFFECTOR Therapeutics、Scribe Therapeutics、Mammoth Biosciences、Synthego 和 Inari 的科学顾问委员会成员。JAD 是强生公司的董事,其研究项目由 Biogen 和辉瑞公司赞助。PAB 是 Beam Therapeutics 的顾问,拥有股票期权。DRL 是 Editas Medicine、Pairwise Plants、Beam Therapeutics 和 Prime Medicine 的顾问和联合创始人,这些公司使用基因组编辑技术。作者已提交了进化 ABE 的专利申请。
6.1黄素腺嘌呤二核苷酸的结构。。。。。。。。。。。。。。。。。。。。。39 6.2不同相互作用幅度的对数图。。。。。。。。。。42 6.3 FAD自由基对系统的单线产量。。。。。。。。。。。。。。。。。。45 6.4 FAD分子的开放和闭合构型。。。。。。。。。。。46 6.5腺嘌呤和异丙沙嗪环之间的距离。。。。。。47 6.6 FAD光化学反应方案。。。。。。。。。。。。。。。。。。48 6.7单线和三重状态的时间演变。。。。。。。。。。。。。。。。。51 6.8瞬态吸收∆ a的时间曲线(b = 20mt,t)。。。。。。。。。。。。。53 6.9计算的FAD和实验MFE。。。。。。。。。。。。。。。。。。54 S.1电子偶极 - 偶极耦合和其他相互作用的幅度。。。58 S.2不同HFCC的MFE曲线。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 58 S.3 MFE曲线,用于不同的松弛和化学反应速率。 。 。 。 。 59 S.4信号的时间曲线。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 59 S.5单线收益。 。58 S.2不同HFCC的MFE曲线。。。。。。。。。。。。。。。。。。。。。。。58 S.3 MFE曲线,用于不同的松弛和化学反应速率。 。 。 。 。 59 S.4信号的时间曲线。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 59 S.5单线收益。 。58 S.3 MFE曲线,用于不同的松弛和化学反应速率。。。。。59 S.4信号的时间曲线。。。。。。。。。。。。。。。。。。。。。。。。。59 S.5单线收益。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。60 S.6腺嘌呤和异丙沙嗪环质量中心之间的平均版本。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。60 S.7非对角线术语的时间演变。。。。。。。。。。。。。。。。。。。。61
图 6 在 5 周龄和 37 周龄给药的受试者中,与用 BE4 mRNA 和靶向 PCSK9 的 gRNA 配制的对照 LNP 相比,用变体 12 编辑器 mRNA 和 sgRNA025 配制的校正 LNP 进行了比较。3 (A) 代表性苦味酸红染色的肝切片显示治疗期间有轻度纤维化(样本采自用对照 LNP 治疗的 37 周龄受试者,并在治疗后 1 周收集)。(B) 总肝提取物中的碱基编辑效率。结果表明,与 5 周龄受试者相比,37 周龄受试者的碱基编辑相当,并且由于校正肝细胞的增殖优势,碱基编辑效率随着时间的推移略有提高。(C) 通过免疫测定法 (Meso Scale Discovery) 测量血清人 AAT。(B) 与年龄匹配的对照组相比,血清样本的人中性粒细胞弹性蛋白酶抑制能力。
系统已被探索作为有效的选择剂来消除未编辑的细胞,从而大大简化了细菌中的基因操作过程。9尽管基于 CRISPR/Cas 的基因组编辑方法简单且高效,但它们仍然依赖于细菌中的 HR 来实现精确的基因操作,因此难以在某些缺乏强大 HR 系统的细菌(如结核分枝杆菌)中建立。最近,脱氨酶介导的碱基编辑系统的发展为生物学中的精确基因操作提供了新策略。10 – 12碱基编辑系统使用脱氨反应和随后的 DNA 复制过程直接转换目标碱基,而不是前面提到的基于 CRISPR/Cas 的基因组编辑方法中所利用的 HR。已经建立了两种主要类型的碱基编辑系统:胞嘧啶碱基编辑器(CBE)10,11 和腺嘌呤碱基编辑器(ABE)。 12,13 CBE 已广泛用于各种生物体(包括真核生物 10,11,14 - 17 和一些细菌物种 17 - 22)中的可编程胞嘧啶到胸腺嘧啶的转化,而 ABE 主要在真核生物中建立,例如哺乳动物细胞 12,23 和植物 24,25,用于精确的腺嘌呤到鸟嘌呤的转化。最近,在链霉菌中开发了一种名为 CRISPR-aBEST 的 ABE 系统。13 此外,还开发了可编程的腺苷到肌苷和胞苷到尿苷的 RNA 编辑器。26,27
主要的文献参考和用于编译SDS毒物和疾病注册机构(ATSDR)的数据来源 Environmental Protection Agency Federal Insecticide, Fungicide, and Rodenticide Act U.S. Environmental Protection Agency High Production Volume Chemicals Food Research Journal Hazardous Substance Database International Uniform Chemical Information Database (IUCLID) National Institute of Technology and Evaluation (NITE) Australia National Industrial Chemicals Notification and Assessment Scheme (NICNAS) NIOSH (National Institute for Occupational Safety and Health) National Library of Medicine's ChemID Plus (NLM CIP) National Library of Medicine's PubMed数据库(NLM PubMed)美国国家毒理学计划(NTP)新西兰的化学分类和信息数据库(CCID)经济合作与发展环境,健康和安全出版物的经济合作与开发的安全出版物组织高生产力化学批量化学批量的经济合作和发展筛查信息筛查信息数据集
、闫彤 1 、陈浩然 1 、王嘉华 1 、王英怡 4 、杨叶琴 5 、项略 1 、池在龙 1 、任开群 2 、林斌 6 、林戈 7,8 、李劲松 3,4 、刘勇 1,* 和顾锋 1,2,9,* 来自 1 温州医科大学附属眼视光学院、卫生部视觉科学国家重点实验室、卫生部重点实验室和浙江省眼视光重点实验室,浙江省温州;2 湖南师范大学医学院、湖南省模式动物与干细胞生物学重点实验室、生殖与转化医学湖南省工程研究中心,长沙,中国; 3 中国科学院上海生物化学与细胞生物学研究所、上海分子男科学重点实验室、细胞生物学国家重点实验室、分子细胞科学卓越中心,上海,中国;4 上海科技大学生命科学与技术学院,上海,中国;5 浙江中医药大学护理学院,浙江杭州,中国;6 香港理工大学眼科视光学院,香港,中国;7 中信湘雅生殖与遗传医院,湖南省生殖与遗传临床研究中心,长沙,中国;8 中南大学基础医学院生殖与干细胞工程研究所,长沙,中国;9 湖南师范大学附属广秀医院(湖南广秀医院),长沙,中国
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做出了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creat iveco mmons. org/licen ses/ by/4. 0/。