参考•Blackburn MR,Thompson LF。 腺苷脱氨酶缺乏症:从罕见的免疫缺陷的研究中进行的意外抗原。 J immunol。 2012 Feb1; 188(3):933-5。 doi:10.4049/jimmunol.1103519。 没有抽象可用。 引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/22262755)或PubMed Central上的免费文章(https://wwwwwww.ncbi.nlm.nih.nih.nih.gov/pmc/articles/pmc/articles/ppmc3341658/) Slominska E,Bohynikova N,Bernat-Sitarz K,Bernatowska E,Wolska-Kusnierz B,Kalwak K,Kalwak K,Koltan S,Dabrowska A,Gozdzik J,USSOWICZ J,PAC M. PAC M.具有腺苷Deaminase Deaminase Deficiedicrecity ReficienceReciedrelecipedreled Childs in Polor Polor Polor。 前疫苗。 2023 JAN 6; 13:1058623。 doi:10.3389/fimmu.2022.1058623。 Ecollection2022。 引用PubMed(https://ww w.ncbi.nlm.nih.gov/pubmed/36685585)•Grunebaum E,Booth C,Cuvelier GDE,Loves R,Aiuti A,Aiuti A,Kohn DB。 腺苷脱氨酶缺陷的更新管理指南。 J ALLERGY CLIN IMMUNOLPRACT。 2023 Jun; 11(6):1665-1675。 doi:10.1016/j.jaip.2023.01.032。 EPUB 2023 FEB1。 引用PubMed(https://www.ncbi.nlm.nih.gov/pubmed/36736 952)•Hershfield M,Tarrant T.腺苷脱甲酶缺乏症。 2006年10月3日[更新2024 3月7日]。 in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,编辑。 genereviews(r)[Internet]。 西雅图(WA):西雅图大学的大学; 1993-2025。 Curr Opin Immunol。 2003年10月; 15(5):571-7。 doi:10。 1016/S0952-7915(03)00104-3。 EUR J Immunol。 2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。参考•Blackburn MR,Thompson LF。腺苷脱氨酶缺乏症:从罕见的免疫缺陷的研究中进行的意外抗原。J immunol。 2012 Feb1; 188(3):933-5。 doi:10.4049/jimmunol.1103519。 没有抽象可用。 引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/22262755)或PubMed Central上的免费文章(https://wwwwwww.ncbi.nlm.nih.nih.nih.gov/pmc/articles/pmc/articles/ppmc3341658/) Slominska E,Bohynikova N,Bernat-Sitarz K,Bernatowska E,Wolska-Kusnierz B,Kalwak K,Kalwak K,Koltan S,Dabrowska A,Gozdzik J,USSOWICZ J,PAC M. PAC M.具有腺苷Deaminase Deaminase Deficiedicrecity ReficienceReciedrelecipedreled Childs in Polor Polor Polor。 前疫苗。 2023 JAN 6; 13:1058623。 doi:10.3389/fimmu.2022.1058623。 Ecollection2022。 引用PubMed(https://ww w.ncbi.nlm.nih.gov/pubmed/36685585)•Grunebaum E,Booth C,Cuvelier GDE,Loves R,Aiuti A,Aiuti A,Kohn DB。 腺苷脱氨酶缺陷的更新管理指南。 J ALLERGY CLIN IMMUNOLPRACT。 2023 Jun; 11(6):1665-1675。 doi:10.1016/j.jaip.2023.01.032。 EPUB 2023 FEB1。 引用PubMed(https://www.ncbi.nlm.nih.gov/pubmed/36736 952)•Hershfield M,Tarrant T.腺苷脱甲酶缺乏症。 2006年10月3日[更新2024 3月7日]。 in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,编辑。 genereviews(r)[Internet]。 西雅图(WA):西雅图大学的大学; 1993-2025。 Curr Opin Immunol。 2003年10月; 15(5):571-7。 doi:10。 1016/S0952-7915(03)00104-3。 EUR J Immunol。 2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。J immunol。2012 Feb1; 188(3):933-5。 doi:10.4049/jimmunol.1103519。没有抽象可用。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/22262755)或PubMed Central上的免费文章(https://wwwwwww.ncbi.nlm.nih.nih.nih.gov/pmc/articles/pmc/articles/ppmc3341658/) Slominska E,Bohynikova N,Bernat-Sitarz K,Bernatowska E,Wolska-Kusnierz B,Kalwak K,Kalwak K,Koltan S,Dabrowska A,Gozdzik J,USSOWICZ J,PAC M. PAC M.具有腺苷Deaminase Deaminase Deficiedicrecity ReficienceReciedrelecipedreled Childs in Polor Polor Polor。前疫苗。2023 JAN 6; 13:1058623。 doi:10.3389/fimmu.2022.1058623。Ecollection2022。引用PubMed(https://ww w.ncbi.nlm.nih.gov/pubmed/36685585)•Grunebaum E,Booth C,Cuvelier GDE,Loves R,Aiuti A,Aiuti A,Kohn DB。腺苷脱氨酶缺陷的更新管理指南。J ALLERGY CLIN IMMUNOLPRACT。2023 Jun; 11(6):1665-1675。 doi:10.1016/j.jaip.2023.01.032。EPUB 2023 FEB1。引用PubMed(https://www.ncbi.nlm.nih.gov/pubmed/36736 952)•Hershfield M,Tarrant T.腺苷脱甲酶缺乏症。2006年10月3日[更新2024 3月7日]。in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,编辑。genereviews(r)[Internet]。西雅图(WA):西雅图大学的大学; 1993-2025。 Curr Opin Immunol。 2003年10月; 15(5):571-7。 doi:10。 1016/S0952-7915(03)00104-3。 EUR J Immunol。 2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。西雅图(WA):西雅图大学的大学; 1993-2025。Curr Opin Immunol。2003年10月; 15(5):571-7。 doi:10。1016/S0952-7915(03)00104-3。EUR J Immunol。 2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。EUR J Immunol。2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。可从http://www.ncbi.nlm.nih.gov/books/ nbk1483/PubMed上获得(https://www.ncbi.nlm.nih.gov/pubmed/20301656)•Hershfield MS。基因型是腺苷酸酶缺乏症中表型的重要决定因素。引用PubMed(https://pubmed.ncbi.nlm.nih.gov/14499267)•Hershfield MS。对腺苷受体介导的免疫抑制和腺苷在引起与腺苷脱氨酶缺乏相关的免疫缺陷中的作用的新见解。引用于PubMed(https://pubmed.ncbi.nlm.nih.go v/15580654)•Nofech-Mozes Y,Blaser SI,Kobayashi J,Grunebaum E,Grunebaum E,Roifman CM。腺苷脱氨酶缺乏症患者的神经学性稳定性。Pediatr Neurol.2007 9月; 37(3):218-21。 doi:10.1016/j.pediatrneurol.2007.03.011。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/17765813)•nyhan wl。嘌呤和嘧啶代谢的疾病。mol Genet Metab。2005SEP-OCT; 86(1-2):25-33。 doi:10.1016/j.ymgme.2005.07.027。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/16176880)
注意事项 • 抽搐/癫痫病史 • 近期心肌梗塞 • 近期心脏移植(不到 1 年) • 一度 AV 或束支传导阻滞 • 心房颤动、扑动,尤其是伴有旁路 • 心力衰竭 • 低血压、高血压 • 心力衰竭 • 与支气管收缩不相关的阻塞性肺病,如慢性阻塞性肺病、支气管炎 • 心动过缓 • QT 间期延长 • 怀孕和/或哺乳:关于怀孕期间使用腺苷的信息有限。由于腺苷的半衰期和作用持续时间较短,因此静脉注射腺苷不太可能对孕妇或胎儿造成严重的有害影响。如果选择腺苷作为药物,请尽可能使用最低有效剂量并缩短用药时间。
腺苷脱氨酶2(ADA2)缺乏是一种常染色体遗传遗传遗传的自身炎症疾病,由ADA2基因的功能丧失突变引起。尽管发病机理涉及促炎性细胞因子的产生,例如肿瘤坏死因子(TNF) - α和中性粒细胞外陷阱形成的失调,而导致的胞外腺苷的积累过多,但仍需要澄清的始终澄清,因此中性粒细胞陷阱形成的产生,以及中性粒细胞外陷阱形成的失调。除了最初描述的与血管炎相关的症状外,血液学,免疫学和自身炎症症状现在已经得到充分认可。诊断是通过证明ADA2的致病变异的,双重功能丧失和低血浆ADA2催化活性的识别。目前,TNF-α抑制剂是控制血管炎表现和预防中风的选择。然而,在出现严重血液学发现的患者中,TNF-α抑制剂不是选择的治疗方法,并且在某些情况下已证明造血干细胞移植已成功。重组ADA2蛋白和基因疗法是未来有希望的治疗方式。总而言之,ADA2缺乏症具有广泛的表型,应在不同临床情况的鉴别诊断中考虑。在这篇综述中,我们总结了ADA2缺乏症和可用治疗方案的疾病表现。
摘要:A3 腺苷受体 (A3AR) 在病理性人类细胞中过度表达。Piclidenoson 和 namodenoson 是具有高亲和力和选择性的 A3AR 激动剂。两者均通过涉及 Wnt 和 NF- κ B 信号通路失调的分子机制诱导癌症和炎症细胞凋亡。我们公司进行了 I 期研究,证明了这两种分子的安全性。在银屑病患者的 II 期研究中,piclidenoson 是安全的,并显示出显著改善皮肤病变的疗效。Namodenoson 目前正在开发用于治疗肝癌,在患有晚期肝病且 Child-Pugh B 评分为 7 的患者中观察到总生存期延长。针对该患者群体的关键 III 期研究已获得 FDA 和 EMA 批准,目前正在进行中。 Namodenoson 还正在开发用于治疗非酒精性脂肪性肝炎 (NASH)。IIa 期研究已成功完成,表明 Namodenoson 具有抗炎、抗纤维化和抗脂肪变性作用。NASH 的 IIb 期研究目前正在招募患者。总之,A3AR 激动剂是处于临床开发后期的有希望的候选药物,并在其目标适应症中表现出安全性和有效性。
腺苷信号代表了调节肿瘤免疫的关键代谢途径,并由肿瘤采用以促进其生长并损害免疫力。腺苷是在高肿瘤微环境(TME)水平上响应缺氧而产生的。这是一种广泛的免疫抑制代谢产物,可调节先天和适应性免疫反应。抑制腺苷生成酶是通过增强T细胞和NK细胞功能并抑制髓样细胞和其他免疫调节细胞的促肿瘤作用来促进抗肿瘤免疫力的一种策略。对靶向腺苷信号各个方面的免疫治疗性的研究已经在进行中,已经开发了几种抵抗腺苷轴的试剂。临床前研究表明,仅需要进行更多的研究来了解它们作为治疗选择的可行性,但需要进行更多的抗肿瘤活性。细胞外腺苷通过四个已知的G蛋白偶联腺苷受体之一激活细胞途径:A 1,A 2A,A 2B和A 3。A 2A受体是在T细胞和天然杀伤T(NKT)细胞,单核细胞,巨噬细胞,DCS和天然杀伤(NK)细胞上表达的高功能受体。相比之下,A 2B受体是相对较低的非实身受体,最多由巨噬细胞和DC表达(1)。许多有利于腺苷生成组织破坏,缺氧,核苷酸酶表达和炎症的因素,这是TME的高度特征。腺苷是一种免疫抑制代谢产物,在TME内部高水平产生。因此,在靶向肿瘤相关腺苷信号的各个方面以增强对恶性肿瘤的免疫反应(2)方面已经完成了显着工作(2)。缺氧,细胞更新增加以及CD39和CD73的表达是腺苷产生的基本因素。癌症免疫疗法中的腺苷途径阻断对癌症患者至关重要。靶向腺苷途径通常集中在免疫抑制腺苷的两个主要方面,这是通过(1)通过靶向CD73和CD39抑制TME中腺苷的产生,以及(2)通过靶向A 2A和2B受体(3)的腺苷信号的阻断。
新的免疫检查点正在出现,以提高对免疫药物的反应率。由于参与肿瘤微环境的免疫抑制,腺苷A 2A受体(A 2A R)被提议作为免疫发育的靶标。封锁2A R可以恢复肿瘤免疫力,从而改善患者的预后。在这里,我们描述了通过噬菌体显示的人A 2A R(HA 2A R)的有效,选择性和抑制肿瘤抗体拮抗剂的发现。We con- structed and screened four single-chain variable fragment (scFv) libraries—two synthetic and two immunized—against hA 2A R and antagonist-stabilized hA 2A R. After biopanning and ELISA screening, scFv hits were reformatted to human IgG and triaged in a series of cellular binding and functional assays to identify a lead candidate.铅候选者TB206-001散布了HA 2A R-Over表达HEK293细胞的纳摩尔结合;与小鼠和cynomolgus a 2a r的交叉反应性,但不是人类A 1,2b或3受体; HA 2A R在HA 2A R-r-evercress表达HEK293细胞和外周血单核细胞(PBMC)中的功能拮抗作用;结肠肿瘤的HUCD34-NCG小鼠中的肿瘤抑制活性。鉴于其治疗特性,TB206-001是将其纳入下一代双特异性免疫治疗药的良好候选者。
作者分支机构:美国宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院放射学系1。2宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院妇科和肿瘤学系OBGYN系。 3辐射肿瘤学系,辐射肿瘤学系3,美国德克萨斯州德克萨斯大学医学博士安德森癌症中心,美国德克萨斯州休斯敦 *通讯作者:宾夕法尼亚州宾夕法尼亚州博士学位160A约翰·摩根大楼360年3620 Hamilton Walk PAREDELPHIA,汉密尔顿步行PA 19104电话:(215)573-603-603-603-603-603-603-603-603-603--603--603--603--603--603--603--603--603--603--603--603--603--603--603--603--603--603--603--63-6016: robdoot@pennmedicine.upenn.edu https://orcid.org/000000-0003-1747-239X第一作者:Anthony J. 宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州的年轻大学1910年约翰·摩根大厦(John Morgan Walk),宾夕法尼亚州19104电话:(215)746-0039传真:(215)573-3880电子邮件:anthony.youn.youn.youn.young@pennmedicine.upenn.upen.upen.upen.upen.upen.edu word Count:4990 Financial Supports:4990 Fancial Supports:RD DAS NIDAS(k01)。 ll希望基金会的万花筒和玛莎·里夫金基金会(Marsha Rivkin Foundation)支持。 AP由KL2TR001879支持。 研究还由国家研究资源中心和国家卫生研究院(UL1TR000003)的国家研究中心和宾夕法尼亚大学转化医学和治疗学研究所,宾夕法尼亚州放射科学系和NCI(P30CA016520)赞助。 在卵巢癌中运行标题18 f-ftt目标PARP-12宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院妇科和肿瘤学系OBGYN系。3辐射肿瘤学系,辐射肿瘤学系3,美国德克萨斯州德克萨斯大学医学博士安德森癌症中心,美国德克萨斯州休斯敦 *通讯作者:宾夕法尼亚州宾夕法尼亚州博士学位160A约翰·摩根大楼360年3620 Hamilton Walk PAREDELPHIA,汉密尔顿步行PA 19104电话:(215)573-603-603-603-603-603-603-603-603-603--603--603--603--603--603--603--603--603--603--603--603--603--603--603--603--603--603--603--63-6016: robdoot@pennmedicine.upenn.edu https://orcid.org/000000-0003-1747-239X第一作者:Anthony J.宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州的年轻大学1910年约翰·摩根大厦(John Morgan Walk),宾夕法尼亚州19104电话:(215)746-0039传真:(215)573-3880电子邮件:anthony.youn.youn.youn.young@pennmedicine.upenn.upen.upen.upen.upen.upen.edu word Count:4990 Financial Supports:4990 Fancial Supports:RD DAS NIDAS(k01)。ll希望基金会的万花筒和玛莎·里夫金基金会(Marsha Rivkin Foundation)支持。AP由KL2TR001879支持。研究还由国家研究资源中心和国家卫生研究院(UL1TR000003)的国家研究中心和宾夕法尼亚大学转化医学和治疗学研究所,宾夕法尼亚州放射科学系和NCI(P30CA016520)赞助。在卵巢癌中运行标题18 f-ftt目标PARP-1
摘要肿瘤通过创建抑制抗肿瘤免疫力的肿瘤微环境(TME)而生存。TME通过限制抗原表现,抑制淋巴细胞和天然杀伤(NK)细胞激活并促进T细胞衰竭来抑制免疫系统。抗PD-1和抗CTLA(例如抗PD-1)的检查点抑制剂是免疫刺激性抗体,它们的封锁扩展了一些但不是所有癌症患者的存活率。细胞外腺苷三磷酸(ATP)在发炎的肿瘤中很丰富,其代谢产物腺苷(ADO)是由腺苷A2A受体(A2AR)和腺苷A2B受体(A2BR)介导的免疫抑制作用的驱动器,并且在肿瘤中发现了在肿瘤中的lumor-lymphassiped lympys-symphassiped lympssed Lympsspatied lymphoidsyeloideciped lymphoid和myelyeloideroid。本综述将集中于TME中的关键检查点抑制剂样的免疫抑制剂,以及如何减少腺苷产生或阻断A2AR和A2BR增强抗肿瘤免疫力。