摘要我们已经开发了一种无细胞的系统,用于研究哺乳动物细胞中mRNA的合成。该系统由透析和浓缩的全细胞提取物组成,从HeLa细胞,小分子和转录所需的辅助因子和外源添加DNA组成。RNA聚合酶II的准确介绍完全取决于添加含有启动子的真核DNA。在最佳DNA和提取浓度下,易于检测到来自腺病毒血清型2后期启动子的转录起始,并且可以使用超过4000个核苷酸的特定转录本。在体外合成的RNA包含与体内transkipt相同的5'限制RNase T1 Undeclepleotide。RNA合成还可以在早期和中间腺病毒启动子位点准确地启动。
最初发表于:Jetzer, Tania;Studer, Luka;Bieri, Manuela;Greber, Urs;Hemmi, Silvio (2023)。B 和 C 类工程化人类腺病毒报告了早期、中早期和晚期病毒基因表达。《人类基因治疗》,34(23- 24):1230-1247。DOI:https://doi.org/10.1089/hum.2023.121
Logan Thrasher Collins,1,2 Wandy Beatty,3 Buhle Moyo,4 Michele Alves-Bezerra,5 Ayrea Hurley,5 William Lagor,6 Gang Bao,4 Zhi Hong Lu,2 David T. Curiel 2,* 1 圣路易斯华盛顿大学生物医学工程系;2 圣路易斯华盛顿大学放射肿瘤学系;3 圣路易斯华盛顿大学分子微生物学系;4 莱斯大学生物工程系;5 贝勒医学院分子生理学和生物物理学系;6 贝勒医学院综合生理学系,* 通讯作者。摘要:腺相关病毒 (AAV) 作为基因治疗的递送系统取得了巨大成功,但 AAV 仅有 4.7 kb 的包装容量严重限制了其应用范围。此外,通常需要高剂量的 AAV 来促进治疗效果,从而导致急性毒性问题。虽然已经开发了双重和三重 AAV 方法来缓解包装容量问题,但这些方法需要更高的剂量才能确保以足够的频率发生共感染。为了应对这些挑战,我们在此描述了一种由共价连接到多个腺相关病毒 (AAV) 衣壳的腺病毒 (Ad) 组成的新型递送系统,这是一种以较少的 AAV 总量更有效地共感染细胞的新方法。我们利用 DogTag-DogCatcher (DgT-DgC) 分子胶系统构建我们的 AdAAV,并证明这些混合病毒复合物可实现培养细胞的增强共转导。该技术最终可能会通过提供双重或三重 AAV 的替代方案来扩大 AAV 基因递送的实用性,该替代方案可以在较低剂量下使用,同时达到更高的共转导效率。简介尽管腺相关病毒 (AAV) 基因治疗已显示出巨大的前景并已导致 5 种治疗方法获得临床批准,1–3 但该载体的 DNA 包装能力较低(4.7 kb),一直阻碍着它的应用。人们付出了巨大的努力来开发双重 AAV 系统,该系统将治疗基因的两部分放在不同的衣壳中,旨在共同感染相同的细胞。4–7 类似的三重 AAV 系统也已被探索。8,9 双重和三重 AAV 系统可以通过 DNA 反式剪接、RNA 反式剪接或通过分裂内含肽的蛋白质剪接机制将其分裂的基因重新组合成完整形式。5,7 然而,双重和三重 AAV 通常需要更高的剂量才能实现有效的细胞共转导,尤其是在需要全身给药时。10 这是有道理的,因为两三个货物到达同一个细胞的可能性应该大致分别对应于单个货物到达细胞的比例的平方或立方。因此,大多数双重或三重 AAV 策略都集中于可以局部给药到目标组织的应用,例如视网膜基因治疗。5,7–9 双重和三重 AAV 的另一个缺点是,它们可能导致未接收所有货物的细胞产生部分蛋白质产物。5 由于这些部分蛋白质的翻译量通常比所需的治疗性蛋白质还要大,因此它们可能导致严重的毒性。缓解双重和三重 AAV 基因治疗相关问题的新方法将大大提高 AAV 在治疗需要递送大量转基因序列的疾病方面的适用性。为了应对这些挑战,我们在此构建了一种全新的基因递送系统“AdAAV”,它由更大的(直径约 100 纳米)Ad 衣壳组成,衣壳上装饰有
Crimean-Congo出血性发烧病毒(CCHFV)是一种tick传播的奈罗内病毒,具有广泛的地理扩展,可引起严重和致命的疾病。没有批准具体的医学对策来对抗这种疾病。CCHFV L蛋白包含一个具有半胱氨酸蛋白酶的卵巢肿瘤(OTU)结构蛋白,该结构蛋白被认为可以通过从宿主和病毒蛋白中去除泛素和ISG15翻译后修饰来调节细胞免疫反应。病毒去泛素酶(例如CCHFV OTU)是有吸引力的药物靶标,因为阻断其活性可能会增强对感染的细胞免疫反应,并可能抑制病毒复制本身。我们先前证明了工程化的泛素变体CC4是在体外CCHFV复制的有效抑制剂。对小蛋白抑制剂(例如CC4)的治疗使用的主要挑战是它们需要细胞内递送(例如,通过病毒载体。在这项研究中,我们检查了通过致命CCHFV小鼠模型中复制不足的重组腺病毒(AD-CC4)递送体内CC4的可行性。由于肝脏是CCHFV感染的主要目标,因此我们旨在通过比较静脉内(尾静脉)和腹膜内注射AD-CC4来优化该器官。虽然尾静脉注射是腺病毒递送的传统途径,但在我们手中,腹膜内注射导致组织中腺病毒基因组的较高和更广泛的水平,包括肝脏的预期。,尽管有希望的体外结果,但体内CC4治疗的途径均未导致保护致命的CCHFV感染。
肿瘤病毒(OVS)是生物治疗剂,在避免正常健康细胞的同时选择性破坏癌细胞。除了直接进行脑分解外,OV感染还诱导肿瘤微疗法的浮动转移以及肿瘤相关抗原(TAA)的释放,可能会诱导抗肿瘤免疫。由于其免疫刺激作用,已经探索了针对特定TAA的癌症疫苗接种的OV。但是,这种方法通常需要对病毒的遗传修饰和每个靶标的新病毒载体的产生,这很难为低普遍的抗原实施。在最近的一项研究中,Chiaro等。提供了关于如何实施肽疫苗接种平台的优雅概念证明,以克服这种限制间皮瘤的局限性。作者表明,在人间皮瘤中鉴定免疫统一的TAA并用它们涂上溶瘤腺颗粒的可行性。结果是一种基于定制病毒的癌症疫苗,它绕过了遗传学工程病毒产生的时间和资源消耗的步骤。尽管仍然有待解决的问题,但这种有趣的方法提出了使用溶溶病毒疗法的个性化癌症医学的新型策略。
随着现代免疫疗法的成功发展,免疫检查点抑制剂(ICIS)的抽象背景目前被认为是癌症患者的潜在治疗选择。然而,ICI在人类癌症中的治疗潜力主要受其全身毒性和低反应率的限制,这表明有必要使用有效的载体递送局部药物并重塑免疫抑制性肿瘤微环境(TME)以增强ICI治疗。在这里,我们建造了一种新型的双基因重组癌腺病毒,称为RCAD-LTH-SHPD-L1,基于RCAD病毒平台,该平台配备了编码抗VEGFF抗体和SHRNA的DNA片段,用于抑制PD-L1表达。方法分别使用Western印迹,ELISA和定量PCR分析了其分泌,抗原特异性和复制的正确组装,以分析其分泌,抗原特异性和复制。评估了RCAD-LTH-SHPD-L1对细胞增殖,血管生成和细胞迁移的体外作用。使用免疫缺陷和人性化的免疫系统小鼠模型在体内评估了抗肿瘤作用和治疗机制。通过ELISA,免疫组织化学和流式细胞术对TME进行了研究。结果RCAD-LTH-SHPD-L1细胞分泌抗VEGF抗体,并抑制PD-L1在癌细胞中的表达。此外,RCAD-LTH-SHPD-L1对人类癌细胞产生了特定的细胞毒性作用,但对鼠类癌细胞或正常人类细胞不产生特定的细胞毒性作用。此外,数据强调了结合局部rCAD-lth-SHPD-L1比RCAD-SHPD-L1在免疫缺陷的小鼠模型和人源化免疫系统小鼠模型中产生了更有效的抗肿瘤效应,这表明,肿瘤生长的显着降低证明了。此外,RCAD-LTH-SHPD-L1调制了TME,这导致了淋巴细胞浸润和免疫表型的改变,其特征是缺氧因子HIF-1α和血管生成标记物CD31的下调,诸如IFN-γ,IL-γ,IL-6和IL-12的细胞因子的上调。总而言之,我们的数据表明,通过工程RCAD-LTH-SHPD-L1局部递送抗VEGF抗体和SHPD-L1是癌症免疫疗法的高效且安全的策略。
无论人类腺病毒 (HAdV) 感染对健康人群的临床影响以及在免疫抑制患者的高发病率如何,目前仍无特定的治疗方法。在本研究中,我们筛选了 CM1407 COST Action 的化学库,其中包含 1,233 种天然产物,以鉴定限制 HAdV 感染的化合物。其中,我们鉴定出鱼藤醇酮,它是一种显著抑制 HAdV 感染的化合物。接下来,我们选择了四种与鱼藤醇酮结构相关的异黄酮类化合物(例如鱼藤酮、鱼藤素、小米酮和特弗罗辛),即鱼藤类化合物,以评估和体外表征它们对 HAdV 和人类巨细胞病毒 (HCMV) 的抗病毒活性。它们对 HAdV 的 IC 50 值范围从鱼藤酮的 0.0039 µM 到 tephrosin 的 0.07 µM,选择性指数范围从鱼藤酮的 164.1 到 deguelin 的 2,429.3。此外,在斑块测定中每种化合物获得的 IC 50 浓度的两倍下,HCMV 复制的抑制范围为 50% 到 92.1%。我们的结果表明,鱼藤酮、deguelin 和 tephrosin 的作用机制涉及 HAdV 复制周期的后期阶段。然而,鱼藤酮的抗病毒作用机制似乎涉及微管聚合的改变,从而阻止 HAdV 颗粒到达细胞的核膜。这些异黄酮类化合物在纳摩尔浓度下对 HAdV 表现出高抗病毒活性,可被视为开发新型广谱抗病毒药物的有力候选药物。
10 Kis, Z.、Kontoravdi, C.、Shattock, R. 和 Shah, N. 生产满足全球大流行需求的 RNA 疫苗所需的资源、生产规模和时间。239 疫苗(巴塞尔)9 ,doi:10.3390/vaccines9010003 (2020)。240
