EX-VIVO肺部灌注(EVLP)已成为肺移植中的一种变革性技术,提供了评估和修复供体肺部的解决方案,否则该供体肺部否则将被视为不适合。本评论文章探讨了EVLP技术的显着进步及其在临床实践中的应用。我们讨论了选择和修复供体肺部的标准,并强调了EVLP用于肺部肺部功能受损的肺部,这是由于诸如延长的缺血时间和供体吸烟史之类的因素。此外,我们详细介绍了改善肺功能评估的技术进步,包括开发更复杂的灌注解决方案以及对实时评估的人工智能的整合。此外,我们讨论了EVLP的未来前景,重点是灌注溶液中的潜在创新,再生医学和基因疗法的整合以提高同种异体移植质量。通过这项全面审查,我们旨在清楚地了解EVLP的当前状态及其有希望的未来方向,最终有助于改善肺移植的结果。
b 型血红蛋白病,包括镰状细胞病 (SCD) 和 b 型地中海贫血,是导致血红蛋白结构或生成异常的普遍单基因疾病,影响全球数百万人。目前可用于治疗 SCD 和 b 型地中海贫血的疗法主要是对症治疗和异基因造血干细胞移植 (HSCT)。异基因造血干细胞移植是唯一的治愈性疗法,但有局限性。使用基因改造造血干细胞 (HSC) 的基因疗法有望成为一种有效的治愈性疗法。最近批准的基于基因改造造血干细胞的体外疗法 (CASGEVY、LYFGENIA、ZYNTEGLO) 已显示出对 SCD 和 b 型地中海贫血的显著和持久的治疗益处。在这篇评论文章中,我们讨论了当前的遗传方法和创新策略,以确保 SCD 和 b 型地中海贫血的基因治疗安全有效,并总结了已完成和正在进行的临床试验的结果。我们还讨论了使用 CRISPR/Cas 技术进行体内基因编辑治疗镰状细胞性贫血和β-地中海贫血的前景和挑战,这可能会简化制造和治疗过程。体内基因治疗可以最大限度地降低体外基因治疗的风险,并可以克服与复杂基因治疗产品相关的多重障碍,让更多患者能够获得治疗,尤其是在这些疾病高度流行的发展中地区。
Kim等。 提出了一种基于结构的新推理方法,该方法通过利用每个复合物的多个分子对接姿势来预测蛋白质结合属性。 他们的方法与注意力网络集成了多个实体学习(MIL),从而可以进行准确的预测,而无需依赖于复杂的晶体结构,而这些晶体结构通常是不可用的。 mil是一个弱监督的学习范式,在只有汇总标签而不是用于单个数据点的标签时,特别有效。 作者利用了MIL处理多个对接姿势的能力,即使在没有实验性结构数据的情况下,也可以改善具有结合的依从性预测。 通过考虑结构的灵活性和不确定性,这种显着增强的虚拟筛选过程。 使用PDBBIND和包含针对SARS-COV-2主要蛋白酶的化合物的PDBBIND和数据集验证该模型,与需要晶体结构的模型相比,证明了竞争性能。 通过利用对接摆姿势,该方法扩大了与以前无法接近蛋白质靶标的结合依据预测的适用性,这标志着AI-wir.驱动的药物发现和虚拟高通量筛查的主要进步。Kim等。提出了一种基于结构的新推理方法,该方法通过利用每个复合物的多个分子对接姿势来预测蛋白质结合属性。他们的方法与注意力网络集成了多个实体学习(MIL),从而可以进行准确的预测,而无需依赖于复杂的晶体结构,而这些晶体结构通常是不可用的。mil是一个弱监督的学习范式,在只有汇总标签而不是用于单个数据点的标签时,特别有效。作者利用了MIL处理多个对接姿势的能力,即使在没有实验性结构数据的情况下,也可以改善具有结合的依从性预测。通过考虑结构的灵活性和不确定性,这种显着增强的虚拟筛选过程。使用PDBBIND和包含针对SARS-COV-2主要蛋白酶的化合物的PDBBIND和数据集验证该模型,与需要晶体结构的模型相比,证明了竞争性能。通过利用对接摆姿势,该方法扩大了与以前无法接近蛋白质靶标的结合依据预测的适用性,这标志着AI-wir.驱动的药物发现和虚拟高通量筛查的主要进步。
通过大型投资的运输基础设施的演变涵盖了旨在提高运输网络的效率,能力和连通性的广泛,复杂和变革性的倡议。这些努力通常需要大量的金融投资,高级技术的应用和细致的计划流程。这种大型投资的范围包括自动轨道系统以及具有挑战性的道路和隧道建筑。这些运输计划的关键方面是它们对可持续性和环保实践的承诺。总体而言,这些大型投资标志着运输基础设施的显着进步,从根本上改变了全球人和商品的运动。此外,其中许多举措都优先考虑可持续性,智能技术的融合以及建立相互联系的全球经济体,从而为城市提供了可持续发展。随后,本期特刊(SI)调查了大型运输基础设施项目的发展与对可持续发展的影响之间的复杂相互作用,并特别着重于重要的运输计划。它主张进行技术和方法论当代政策的转型,从识别问题和期权到最终采用。这种变化对于促进向更可持续的运输系统的过渡至关重要,同时也承认有必要整合其他运输模式。此SI锚定在全球合作研究小组中。因此,该SI强调了所遇到的各种挑战,与绩效指标使用相关的复杂性以及需要注意的重要制度因素。包括后工业化国家(例如英国,澳大利亚和意大利)等最新的国际案例研究所包含的贡献。此外,SI旨在调查有关主要运输基础设施项目的可持续规划和发展的创新策略,从而集中于整个项目开发过程中出现的主要计划障碍,挑战和不确定性。其主要优势在于能够将可持续运输计划的原则应用于实际发展方案。通过采用多种方法,该问题旨在展示从项目开始到完成的可持续发展的旅程。从本SI中的文章中得出的见解和课程旨在根据每项研究的发现和结果提供宝贵的指导。因此,这些见解可以支持一系列研究人员,从业人员和其他从事运输大型投资的基本利益相关者,因为它们努力通过改进的计划和发展策略来应对与此类倡议相关的可持续性挑战。此外,最近出现了大量的文献,该文献涉及一系列基础设施计划及其相关过程。尽管如此,该SI将专门集中于运输基础设施的进步,这是大型投资计划和开发的基础。此重点需要彻底检查和评估各种可持续的计划框架以及参与项目开发的当前流程。
汉诺威·梅斯(Hannover Messe)汇集了全球行业领导者和创新者,以探索制造,数字化转型和可持续性的进步。
Anupam Mishra博士在2015年在印度德里大学完成了理学学士学位。,后来,2017年,他在运气大学的化学系现任印度化学系的研究生学习。在S. K. Awasthi教授的指导下,他获得了德里化学系的博士学位。Anupam Mis-Hra博士是科学技术部(DST)的Inspire(SHE)奖学金的获得者,支持他从毕业到毕业后的研究。随后,他因其博士后研究而被DST授予享有声望的Inspire奖学金。另外,他在科学委员会(CSIR)净JRF奖学金奖学金委员会中获得了令人印象深刻的全印度排名(AIR)47。他在著名的国际期刊上有许多出版物,并拥有一项国际专利。他的研究兴趣包括先进的合成方法,药物化学,杂环化学,异质催化,肽化学和药物发现。
摘要。随着太空探索技术的进步,对可靠的再入系统的需求变得越来越迫切。欧洲柔性隔热罩:未来在轨演示的先进 TPS 设计和测试 - 2 (EFESTO-2) 项目是一项由“地平线欧洲”资助的计划,旨在提高充气隔热罩 (IHS) 的技术就绪水平,IHS 是一种可在再入期间部署的创新热保护系统。该项目旨在进一步推进 EFESTO 项目中取得的成果,重点是扩大对 IHS 关键方面的调查,并提高该领域使用的工具和模型的置信度和稳健性。 EFESTO-2 项目建立在四大支柱之上,包括通过商业案例分析巩固有意义的太空应用的用例适用性、将父项目 EFESTO 的调查范围扩展到 IHS 领域的其他关键方面、提高工具/模型的置信度和稳健性,以及巩固路线图以保证科学界和工业界继续主导欧洲的 IHS 领域。本文概述了 EFESTO-2 项目的目标、成就、正在进行的活动以及计划完成的活动。详细描述了该项目在热保护系统、充气式隔热罩和技术就绪水平等领域的进展,突出了该项目对欧洲再入技术路线图的贡献。通过该项目,欧洲空间计划旨在突破再入技术的极限,并巩固其在太空探索创新技术领域的领先地位。该项目已获得欧盟“地平线欧洲”研究与创新计划的资助,资助协议编号为 1010811041。
学生摘要 论文“下一代药物输送:靶向方法的比较评估”探讨了药物输送系统的演变和进步,特别关注靶向药物输送系统 (TDDS)。该研究强调了传统药物输送方法的局限性,例如全身分布导致脱靶效应和生物利用度低。它强调需要创新方法来提高治疗效果,同时最大限度地减少不良反应,特别是在癌症治疗中。本文严格评估了各种下一代 TDDS,包括基于纳米颗粒的系统、抗体-药物偶联物和刺激响应系统,评估了它们的有效性、安全性和临床转化潜力。通过比较这些先进技术,该研究旨在深入了解它们对精准医疗和药物输送未来的影响。关键词:药物输送系统、靶向药物输送、基于纳米颗粒的系统、精准医疗、治疗效果。 1. 简介术语“药物输送系统”是指药物制剂,例如片剂、胶囊、软膏或溶液。 “控释药物输送系统”或“受控药物输送系统”是指采用旨在调节药物随时间释放动力学的技术的制剂。这些控释系统不同于传统制剂,后者通常会立即释放大部分或全部药物,而无需任何调节。因此,传统制剂通常被称为“速释”(IR)制剂。药物输送技术的演变可以通过多种方式来表征,例如通过治疗类别和输送模式。在这种情况下,通过美国食品药品管理局 (FDA) 批准的产品重点介绍新技术来说明这种演变。尽管药物输送技术在不断进步,但制剂成功的真正衡量标准在于其经过验证的安全性和有效性,正如 FDA 批准所证明的那样,这最终使患者能够从这些创新中受益。理论上,提供缓释的制剂可以与速释 (IR) 制剂一样有效,前提是血液中的药物浓度保持在最大安全浓度 (Cmax) 以下并高于最低有效浓度 (Cmin)。Cmax 与 Cmin 的比率称为治疗指数。由于大多数药物的治疗指数足够宽,即使过量摄入也能保持安全,因此血液药物浓度的变化通常不会影响整体疗效。控释药物输送系统始于 Smith, Kline & French 的 Spansule® 技术
RNA技术是一种新兴领域,利用RNA的独特结构和功能特性来构建纳米级结构并调节复杂的生物系统(Stewart,2024)。RNA已显示成各种形状,大小和复杂性的结构,从而在分子传感,药物输送,免疫调节和细胞活性调节中实现应用(Chandler等,2021)。这项基础工作表明了RNA分子及其化学类似物的显着潜力,作为开发个性化诊断和治疗应用的生物材料,这是许多体外和体内研究的证明,并通过几种FDA批准的配方进行了例证。然而,诸如核酸酶稳定性,有针对性的RNA疗法的靶向递送,其免疫反应的调节以及必须进一步解决的检测极限等关键挑战,以将RNA纳米技术完全转化为临床应用。该研究主题重点介绍了RNA技术的最新进步和创新工作,用于各种RNA类别的诊断和治疗学。该研究主题由国际领导人在核酸技术,药物输送和计算研究领域策划的六项评论和研究文章。所有手稿都呈现出广泛的创新技术,这些技术包括基因疗法的设计和优化,RNA的产生,逻辑门控,组织工程和新治疗靶标的验证。
密码学的核心组成部分之一是密钥的使用。密钥是算法中用于加密和解密消息的信息。密钥必须在发送者和接收者之间保密,以确保只有授权方才能阅读消息。密码系统主要有两种类型:对称和非对称。对称密码学使用相同的密钥进行加密和解密,而非对称密码学(也称为公钥密码学)使用一对密钥 - 一个公钥和一个私钥。公钥用于加密数据,私钥用于解密数据。