。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月17日。 https://doi.org/10.1101/2025.02.17.638297 doi:biorxiv Preprint
注意力控制理论认为,高测试焦虑 (HTA) 个体的注意力控制能力受损。然而,通过工作记忆训练,有可能提高这类人的注意力控制能力。本研究调查了 20 天的工作记忆训练(使用情绪中性刺激)是否能提高 HTA 个体的注意力控制能力。在测试相关压力情况下,使用 Flanker 和 Go/Nogo 实验任务测量注意力控制的前后结果,并收集脑电图数据。结果仅显示,HTA 个体在进行中性工作记忆训练后(即结果后与结果前)的 Nogo alpha 功率显著下降。然而,我们未能提供证据证明中性工作记忆训练对 Flanker 和 Go/Nogo 任务中任务表现的提高具有有益的转移效应。因此,本研究表明,在执行 Go/Nogo 任务时,中性工作记忆训练与重要的神经生理相关因素明显相关,但转移效应相当有限。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 10 月 16 日发布。;https://doi.org/10.1101/2022.10.16.512417 doi:bioRxiv 预印本
摘要 - 登陆阶段是澳大利亚航空登陆的关键阶段,尤其是当航空站降落在移动平台上的时,作为地面车辆。在本文中,将无人机板上摄像头的信息与观察者组合在一起的解决方案用于估计和预测着陆平台的未来位置。此着陆估计用于基于四局的控制算法,用于产生和跟踪着陆轨迹。然后在实时实验(两种情况)中验证所提出的解决方案,以证明闭环系统的良好性能和效率。本文报告了这些实验的主要图。此外,由于这项工作旨在为将来的发展奠定基础,因此在上一节中讨论了这项工作的现有限制。
“三明治结构的特征是使用由一个或多个高强度外层(面)和一个或多个低密度内层(核心)组成的多层皮肤”。在1944年[1]的第一批文章之一中提出了这一定义,该定义是在专门用于三明治结构的第一篇文章中[1],并且在用于这种类型的结构[2-7]中以各种形式采用。今天,对于核心和皮肤而言,今天都有大量的材料和架构组合[8]。但是,对于航空应用,认证极大地限制了可能性。今天,只使用由Nomex,铝合金制成的蜂窝芯或质量非常好的技术泡沫。sim,对于皮肤,我们主要根据玻璃,碳或凯夫拉纤维发现铝合金和层压齐。根据Guedra-Degeorges [9],也是[10]中描述的一些堆叠的情况(另请参见图22),对于航空应用,皮肤的厚度小于2 mm。三明治分为两类。对称三明治,例如图中所示的三明治1主要用于抵抗屈曲及其弯曲。这种类型的三明治非常适合加压结构或承受空气动力载荷的结构,总体而言,它是迄今为止使用最广泛的结构。在飞机结构中也使用了另一种较不受欢迎的三明治类型:不对称的三明治(见图2)。该皮肤的屈曲抗性由A至于由薄膜稳定的薄皮肤组成的经典机身,一个不对称的三明治由碳层压板中的第一个皮肤组成,称为“工作皮肤”,这将大部分膜胁迫从结构中获取。
从环境和经济角度来看,废水处理一直是大都市的主要问题之一。最常见和最有效的厌氧处理需要花费大量成本。同时,厌氧废水处理允许使用其产品之一沼气作为能量载体来进行该过程。然而,尽管厌氧技术具有许多额外的优点,例如无臭味和可以使用稳定污泥作为肥料,但它的特点是生产率低。通过引入固定微生物群的厌氧生物反应器解决了这个问题。许多国家都在积极推进这一领域的发展,但其成果很难系统化。厌氧废水处理工艺在很大程度上取决于废水的特性和生物反应器的设计,因此要证实该工艺的理论研究,必须通过实验进行验证。通过分析与惰性介质厌氧废水处理过程研究相关的已发表著作,我们可以确定主要的发展领域: - 使用底物和某些类型的微生物; - 在一个或多个厌氧生物反应器中进行该过程; - 使用各种介质; - 研究温度的影响 处理技术中的一个重要领域是通过向废水中添加化合物来改性底物本身,以提高处理质量 [1-3]。
摘要 Proaerolysin 是由嗜水气单胞菌产生的一种细菌毒素,它特异性地与质膜上的 GPI 锚定蛋白结合,形成跨膜孔,导致细胞在几个小时内死亡。利用这种独特的特性,proaerolysin 被广泛用于阵发性睡眠性血红蛋白尿症 (PNH) 的诊断测试,这是一种由 PIGA 基因体细胞突变引起的疾病,该基因参与 GPI 锚的生物合成。此外,proaerolysin 还可作为基因操作中的反选择剂。尽管之前已经报道过 proaerolysin 的细菌表达和纯化,但由于缺乏对蛋白质稳定性至关重要的内部二硫键,产量较低。在这里,我们证明使用 Shuffle E. coli 菌株(它促进细胞质中二硫键的形成)可显著提高 proaerolysin 的溶解度和正确折叠。我们实现了高产量的 proaerolysin,从 50 ml 细菌培养物中可获得约 3 mg,纯度超过 99%。通过在小鼠胚胎干细胞 (mESC) 中进行测试,证实了重组 proaerolysin 的功能性,表明这种高产量生产方法为广泛的生物技术应用提供了可靠且经济高效的功能性 proaerolysin 来源。
食物垃圾(FW)的热液预处理已成为一种有希望的策略,以增强用污泥的厌氧共同消化的性能。全球人口和经济活动不断升级导致市政固体废物(MSW)产生激增,带来了重大的环境挑战(Chuen Chen等人。2020)。在人口稠密的城市中,诸如香港的人均FW的产量为0.30 kg/天,而污水污泥(SS)的价格超过0.16千克/天(HKEPD 2019)。在香港产生的11,057吨/天的11,057吨的30.0%包括FW,SS的产量达到约1,052吨/天约为1,052吨(EPD 2021)。鉴于FW在香港的MSW组成中的主要存在,政府提议利用现有污水处理厂的盈余AD容量进行FW/SS共同消化,与单消化相比提供了较高的好处(Mehariya等人。2018)。因此,迫切需要通过有效的厌氧共同消化实践来增强FW和SS的处理,以减轻不利的环境和社会影响。厌氧消化被认为是通过富含甲烷的沼气生产的同时废物处理和能量回收的可行方法(Johnravindar等人。2022)。fw的特征是其高水分含量和降解性,是AD的理想基板。然而,AD在FW和SS中的独立应用面临挑战,例如高机载荷,快速酸化,延长的固体保留率以及抑制物质的存在。2020)。2020)。因此,废水处理厂的污泥中包含大量的重金属,病原体和细菌(Kaur等人。AD涉及一系列的生物学过程,这些过程在没有氧气的情况下通过微生物作用将复杂的底物转化为沼气,其中包括水解,酸生成,乙酰发生和甲烷发生。水解通常是由于形成有毒副产品或不良挥发性脂肪酸(VFAS)而导致复杂有机基质的速率限制步骤(VFAS),而甲烷生成会对易于生物降解的底物产生限制(Kaur等人,在这种情况下,已显示FW和SS的厌氧共同消化可提高消化效率并优化
铜绿假单胞菌是一种革兰氏阴性细菌,引起免疫功能低下个体的感染。该病原体是Eskape病原体之一(包括粪肠球菌,金黄色葡萄球菌,克雷伯氏菌肺炎,baumanii,p.eruginosa,p.eruginosa,肠杆菌,肠杆菌,肠杆菌。),构成威胁生命的医院细菌(Hirsch和Tam,2010; Mulani等,2019)。铜绿假单胞菌还感染患有特定病理的患者,例如囊性纤维化(CF)。由于其形成生物膜的能力,铜绿假单胞菌通常会长期感染CF患者,并代表该疾病的负面结果(Malhotra等,2019)。为了成功地在宿主中建立自己,铜绿假单胞菌部署了一系列毒力因子,包括毒素,铁载体,粘附素和分泌系统(请参阅GONCgonçAlves-alves-de-albuquerque等人的评论,2016; Qin等,2022)。后者允许运输
摘要。Cleansky2项目Solifly正在为航空应用开发更多的结构电池。本文提出了结构整合的概念以及评估结构电池整合对CFRP固体层压板机械性能的影响的方法,考虑到结构电池插入的尺寸和形状以及通过层压层厚度的位置考虑到其位置。已经实施了有限元仿真的完全参数,计算有效的数值策略来评估机械性能,并且首次随着细胞几何形状和集成位置的变化,矩阵损伤的首次开始。使用数字图像相关性和声学发射,获得了SB细胞成分和细胞原型的第一个机械表征数据。讨论了对功能分离组件的SB集成概念的优势和权衡的初步评估。