在连续流动反应器中使用有氧颗粒物生物量的抽象家庭废水处理通常被认为比使用SBR时的性能差。因此,有必要改善反应堆设计的操作模式和操作模式。这项研究的目的是检查过度充气对颗粒有氧形成的影响及其在用人工底物处理废水方面的性能。Reaserach carried out with providing intermitten aeration variation (3 liters/minute; 2,55 cm/s) in periods of 2, 3, and 4 hours (HRT 6 hours; OLR 2.5 kg COD/m 3 .day; CH 3 COONa as a carbon source) in an Airlift reactor with continuous flow system (H/D 12.5 outside and 20 internal parts).在4小时内给出间断的曝气变化后,有氧颗粒状的形成更好,生物质相对稳定和紧凑。有氧颗粒状特性为85-88 mL/g; 32.95 cm/min; SVI值的1.87毫米和0.67分别为杂种,直径和纵横比。从变异中获得的有机,铵和硝酸盐的去除效率在另外两个变化中最高,为58.35%; 26.56%;有机,铵和硝酸盐的25.75%。测试了用于评估微生物性能的动力学模型是单体,孔托瓦模型,GRAU二阶和Stover-kincannon动力学模型。二阶Grau动力学模型更适合于追踪生物量在间隔曝气变化中使用的底物,关键字:空运反应堆,有氧颗粒状生物量,间歇性曝气
氯化铁(FECL 3)被广泛用于污水处理过程中,并通过留在废物激活的污泥中(WAS)来影响厌氧消化过程。然而,厌氧消化系统涉及的FECL 3(FC)的效果和机制尚未彻底阐明。在这项研究中,评估了FC作为痕量元素的利用来增强厌氧共消化的甲烷产生。此外,还研究了FC添加的不同效果和潜在的机制在WAS的每个关键阶段和食物废物(FW)厌氧共消化中。发现FC增强了高达50.74%的甲烷产生,最大值在300 mg-fc/l的剂量下获得。fc促进了溶解度,水解和酸化可能是通过异化性铁还原过程促进的,因为FC可以用作电子受体,以加速WAS和FW复合有机物的分解和降解,并接受中间体电子以刺激氨基酸和单糖酸盐酸中乙酸的杀菌剂。然而,FC以高剂量浓度抑制甲烷的产生,这归因于铁的毒性和挥发性脂肪酸的积累并降低pH。酶促分析表明,FC添加增加了淀粉酶活性,这是一种重要的水解酶,也降低了滞后相。总体而言,这项研究有助于更好地理解整合到WAS和FW厌氧共同消化中的FC机制,并为优化能源/碳恢复的途径奠定了基础。
在这项横断面研究中,有909名来自法国普通人群(发展队列)的5至18岁的儿童,来自德国和美国普通人群(验证队列)的232名儿童遵循有关高质量CPET评估的准则。线性,二次和多项式数学回归方程被应用以识别最佳的VO2MAX Z分数模型。使用VO 2MAX Z分数模型预测和观察到的VO 2MAX值,并在开发和验证队列中比较了现有的线性方程。对于两个性别,使用VO 2max,高度和BMI的自然对数的数学模型是数据最适合数据。该Z分数模型可以应用于正常和极端权重,并且在内部和外部有效性分析中都比现有的线性方程更可靠(https://play.google.com/store.com/store/apps/apps/details?id=com.d2l.zscore)一下。
摘要简介转移性非小细胞肺癌(MNSCLC)患者患有许多与疾病和治疗有关的症状,这可能会进一步损害患者的整体状况。除了对生活质量和疲劳的好处外,体育锻炼还可以改善治疗反应,特别是由于其对免疫系统的已知影响。ERICA研究旨在评估MNSCLC患者的免疫化学疗法输注以前实现的监督急性体育锻炼治疗的可行性。次要目标将检查急性运动的影响以及无监督的房屋步行计划对临床,身体,社会心理和生物学参数的影响。方法和分析Erica是一项在LéonBérard综合癌症中心(法国)进行的前瞻性,单中心,随机对照,开放标签的可行性研究。30例新诊断为MNSCLC的患者将与“运动”或“控制”组随机分配(2:1)。在基线和最后一个治疗周期中,两组的参与者将收到体育锻炼建议,并进行两次营养评估。在运动小组中,参与者将获得一个为期3个月的计划,该计划包括在免疫化学疗法注入之前进行的急性体育锻炼,以及一个无监督的基于家庭的步行计划,并具有活动跟踪器。急性运动包括35分钟的间隔训练,在注入前15分钟终止的次最大强度。该研究已在临床检查中注册。Gov(NCT编号:NCT04676009),并且处于前阶段。临床,物理,生物和社会心理参数将在纳入后3和6个月进行评估。生物学措施将包括免疫,炎症,代谢,氧化应激生物标志物和分子分析。道德和传播该协议得到了法国伦理委员会的批准(ComitédeProtection des versones Ile de France II,N°ID-RCB 20.09.04.65226,2020年12月8日)。所有参与者将签署知情同意书。
3 Université Paris XI, , France (E-mail: Beatrice.Laroche@lss.supelec.fr ) 4 INRA, UR910, Unité d'Ecologie et Physiologie du Système Digestif, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France (E-mail: marion.leclerc@jouy.inra.fr ) Abstract本文介绍了人类结肠中碳水化合物厌氧消化的模型结构的描述。由于厌氧消化在消化剂和动物胃肠道中类似地发生,因此提出了这些系统之间的相似之处。该过程的水力行为,反应机制和转运现象被确定为构建数学模型的关键初步步骤。在此基础上,提出了验证模型的障碍,并提出了初步方法来评估所获得的结构的充分性,该结构的构建最小的微生物群模型。数学模型将在动物模型上进一步验证,该模型由由人类大肠子接种模型微生物联盟接种的轴突啮齿动物。这种方法对于更好地理解人类消化道,作为一个复杂的系统以及微生物群在人类健康中的作用非常有用。关键字厌氧消化建模;碳营养链;人类结肠;微生物群引言人类结肠(也称为大肠)是肠内的厌氧室。它的主要功能是通过消化纤维的降解为人体带来能量(即复杂的碳水化合物)未水解并吸收在上部消化道中(MacFarlane和Cummings,1991)。除了纤维降解的代谢方面外,宿主与细菌群落之间的相互作用刚刚开始被理解。共生微生物在人类健康中起着重要作用。例如,它们参与炎症性肠道疾病现在已经有充分的文献证明(Gill等,2006)。尽管在人类健康中起了重要作用,但肠道菌群组成和功能仍然有待阐明。胃肠道研究(GIT)微生物群的主要局限性是其微生物多样性超过数百种(Eckburg等,2005),而培养的细菌数量很少,占总微生物细胞的20%(Suau等,1999)。然而,分子方法首先通过元基因组学方法靶向16sRDNA基因和功能基因,可以更好地表征细菌多样性和未培养物种的功能(Manichanh等,2006,Gloux等,2007,2007,Gill等,Gill等,2006)。在文献中,人工系统(化学稳定)或硅方法已被用来研究系统的特定方面,例如微生物竞争(Ballyk等,2001),VFA吸收(Tyagi等,2002; Minekus等,1999)和主机之间的相互作用和相互作用。但是,这些模型都没有整合大肠的生理参数,生化过程和通量以及功能性微生物多样性。由于其生物学复杂性,对人类肠道生态系统的建模确实是一个具有挑战性的主题。这也是更好地理解碳水化合物发酵的关键步骤。此外,模型开发在理解微生物群落对消化系统在健康个体和炎症性疾病发展中的稳定性方面的影响中起着重要作用。这种模型将用于研究饮食方案对人类胃肠道菌群的影响。该模型也将是体内和体外实验设计的非常有用的工具,因为医疗领域和私人公司(药品,营养,益生菌)都需要代表“健康肠道微生物群”的生物学工具。
摘要:碎屑的分解途径是宏观栖息地对“蓝色碳”天然碳固相的贡献的关键过程。使用异位分解室研究了3个东北大西洋冠层海带物种的厌氧分解。thallus零件(stipes,holdfast和叶片)Hyperborea,Saccharina latis-sima和L. digitata在温度控制的黑暗条件下仍在海水中孵育。难治性(RP),第一阶分解速率(K)和相关的半衰期(T 1/2)的cal cal- cal- cal- cal。在0、7、14和21 D中测量了在孵化水中测量的溶解有机和无机碳(分别是DOC和DIC),并在每个分解阶段确定热重为重量纤维纤维纤维。氧气耗尽发生在24小时内。发布的DOC是DIC的大约5倍。Holdfast材料产生了最多的DIC,而刀片材料则释放了最大数量的DOC。S. latissima发行的文档少于L. Hyperborea和L. digitata。在整个21 d孵育中,碎片的平均(SD)RP从0.46±0.05增加到0.50±0.04。S. latissima的整个RP最高。一阶分解速率,平均在3个海带物种上,给出了27.8±2.9 d的叶片片段的半衰期(t 1/2),(k = 0.025±0.002),而定位为113.2±21.1 d(k = 0.006±0.001)。该实验在早期分解过程中表达了宏观碳的命运,因此可以控制大量藻类的蓝色碳途径的过程,从而强调了不同物种和thallus部分的分解差异。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月17日。 https://doi.org/10.1101/2025.02.17.638297 doi:biorxiv Preprint
从环境和经济角度来看,废水处理一直是大都市的主要问题之一。最常见和最有效的厌氧处理需要花费大量成本。同时,厌氧废水处理允许使用其产品之一沼气作为能量载体来进行该过程。然而,尽管厌氧技术具有许多额外的优点,例如无臭味和可以使用稳定污泥作为肥料,但它的特点是生产率低。通过引入固定微生物群的厌氧生物反应器解决了这个问题。许多国家都在积极推进这一领域的发展,但其成果很难系统化。厌氧废水处理工艺在很大程度上取决于废水的特性和生物反应器的设计,因此要证实该工艺的理论研究,必须通过实验进行验证。通过分析与惰性介质厌氧废水处理过程研究相关的已发表著作,我们可以确定主要的发展领域: - 使用底物和某些类型的微生物; - 在一个或多个厌氧生物反应器中进行该过程; - 使用各种介质; - 研究温度的影响 处理技术中的一个重要领域是通过向废水中添加化合物来改性底物本身,以提高处理质量 [1-3]。
食物垃圾(FW)的热液预处理已成为一种有希望的策略,以增强用污泥的厌氧共同消化的性能。全球人口和经济活动不断升级导致市政固体废物(MSW)产生激增,带来了重大的环境挑战(Chuen Chen等人。2020)。在人口稠密的城市中,诸如香港的人均FW的产量为0.30 kg/天,而污水污泥(SS)的价格超过0.16千克/天(HKEPD 2019)。在香港产生的11,057吨/天的11,057吨的30.0%包括FW,SS的产量达到约1,052吨/天约为1,052吨(EPD 2021)。鉴于FW在香港的MSW组成中的主要存在,政府提议利用现有污水处理厂的盈余AD容量进行FW/SS共同消化,与单消化相比提供了较高的好处(Mehariya等人。2018)。因此,迫切需要通过有效的厌氧共同消化实践来增强FW和SS的处理,以减轻不利的环境和社会影响。厌氧消化被认为是通过富含甲烷的沼气生产的同时废物处理和能量回收的可行方法(Johnravindar等人。2022)。fw的特征是其高水分含量和降解性,是AD的理想基板。然而,AD在FW和SS中的独立应用面临挑战,例如高机载荷,快速酸化,延长的固体保留率以及抑制物质的存在。2020)。2020)。因此,废水处理厂的污泥中包含大量的重金属,病原体和细菌(Kaur等人。AD涉及一系列的生物学过程,这些过程在没有氧气的情况下通过微生物作用将复杂的底物转化为沼气,其中包括水解,酸生成,乙酰发生和甲烷发生。水解通常是由于形成有毒副产品或不良挥发性脂肪酸(VFAS)而导致复杂有机基质的速率限制步骤(VFAS),而甲烷生成会对易于生物降解的底物产生限制(Kaur等人,在这种情况下,已显示FW和SS的厌氧共同消化可提高消化效率并优化
图1来自DEL MAR和SMM800的甲烷渗氧化甲烷的厌氧甲烷氧化活性。原位AOM指标和CH 3 D速率测量值表征低到高AOM活性碳酸盐。a)渗透碳酸盐收集站点Del Mar(浅绿色标记)和圣莫尼卡Mound 800(SMM800,深绿色标记)位于相距129公里。从Google Maps获得的地图。b)生物地球化学渗透碳酸盐设置。c)c)del mar露头,R1和R2的原位图像起源于顶部,R3和R4,从较近的沉积物。d)R9,来自附近的Del Mar区域,硫化垫有氧化垫。e)烟囱和f)原塑料是两个类似化学的结构,是从圣莫尼卡丘800的不同侧收集的。烟囱恢复后用甲烷积极冒泡。对于比例尺,图像中的红色激光点相距29厘米。g)基于:CH 3 D + SO 4 2-HCO 3- + HS- + HDO,在与单氧化甲烷的缺氧孵育中测量的厌氧甲烷激活率(NMOL D CM -3 D -1)。我们在五个时间点上测量了水的ΔD,除非另有说明,否则从线性增加的速率计算了速率。错误条显示了从线性回归计算出的K的标准误差。分别将带有不同颜色的R9,R9.1和R9.2的两个子样本孵育为AOM速率。无法重建用于费率的R9件的方向。在最后一个时间点(T4)硫化物进行测量,并在R9.1,Chimlet顶部,中间,底部和原子质表面中检测到。在检测下,冲浪。*在T4上仅检测到背景高于背景的氘,表明R2和R3。,B.D。的非线性增加。表面,int。内部,BTM。底部