厌氧微生物研究活动的实验室厌氧微生物(LAM)的实验室成立于2015年,是捷克共和国马萨里克大学的微生物学部分实验生物学系的一部分。从一开始,LAM就集中在沼气生产领域,以15年的经验为基础。自2017年以来,由于与能源部门的合作,我们一直在研究与地下气体存储环境(UGS)设施有关的项目。,我们专注于旨在用作生物反应器的UGS设施中从氢和二氧化碳中靶向生产的绿色甲烷。我们的分析证实了能够从氢和碳生产甲烷的UG中存在甲烷古细菌。然而,UGS中的甲烷剂的存在不适合氢储存,这是我们研究重点的另一部分,以及微生物学影响的腐蚀(MIC),这对气体基础设施构成了威胁。我们提供的技术专长服务:
如何使用厌氧罐。厌氧罐通常用于培养哪些细菌。厌氧罐。厌氧罐在微生物学中的应用。厌氧罐原理。厌氧罐功能。一种新型通风厌氧罐已经开发出来(Don Whitley Scientific),克服了与其他市售罐相关的几个技术问题。这种创新系统允许微生物学家或医院技术人员轻松操作,具有独特的安全功能,可消除实验室爆炸的风险。长期以来,我们对微生物群在健康和疾病中的作用的理解一直受到许多组成成员的严格生长要求的阻碍。对人类微生物群的现代研究依赖于在自然环境之外培养厌氧细菌的基本方法。从基本的无氧培养方法到表面培养的进步,20 世纪中期厌氧培养技术得到了显着扩展和改进,这在很大程度上要归功于 Robert E. Hungate 的开创性工作。他革命性的卷管法使 Clostridium cellobioparus 得以成功培养,并导致了对他的技术的完整描述。该方案涉及使用带有煮沸培养基(含有纤维素琼脂)的橡皮塞管,通过该培养基鼓入缺氧气体以除去氧气。这种被称为“亨盖特技术”的创新方法至今仍在使用。分离和研究厌氧菌的旅程始于微生物学的早期。对替代方法的探索导致了创新技术的发展,例如 GasPak 和厌氧手套箱。这些工具使科学家能够在各种实验室中培养厌氧微生物。为了成功培养厌氧菌,研究人员不仅需要专门的仪器,还需要能够模拟其自然环境的合适培养基。培养基成分的突破(包括添加抗氧化剂)使得厌氧菌可以在有氧条件下生长。随着我们进入 21 世纪,宏基因组学揭示了大量未培养的微生物多样性,推动人们重新关注培养技术。最近表征人类微生物群的努力采用了稀释培养,并导致了培养组学的发展——这是一种使用多样化培养条件、长时间孵育和先进光谱法的高通量方法。厌氧培养的早期突破对于分离和分类肠道细菌至关重要,使科学家能够研究它们在微生物群中的代谢、分布和作用。这些初始方法为高通量技术铺平了道路,这些技术为了解人类微生物群居民的功能及其对宿主的影响提供了重要见解。参考文献:Hall, IC (1920). Practical methods in the purete anaerobes. J. Infect. Dis., 27, 576–590. Hall, IC (1922).产孢厌氧菌的鉴别与鉴定。《感染性疾病学杂志》,30,445-504。 Hungate,RE(1950 年)。厌氧中温纤维素分解菌。《细菌学评论》,14,1-49。 Bryant,MP 和 Doetsch,RN(1954 年)。瘤胃液挥发性酸组分中产琥珀酸拟杆菌生长的必要因素。《科学》,120,944-945。 Moore WEC(1966 年)。苛养厌氧菌常规培养技术。《系统细菌学杂志》,16,173-190。 Brewer,JH 和 Allgeier,DL(1966 年)。安全自给式二氧化碳-氢气厌氧系统。《应用微生物学》,14,985-988。 Spears RW 和 Freter,R. 通过保持连续严格的厌氧状态,首次从小鼠盲肠中培养出厌氧菌。各种研究都探索了培养这些微生物的不同方法,包括使用专门的设备和培养基。例如,一项研究采用简化的手套箱程序从人牙龈和小鼠盲肠中分离厌氧菌(Aranki 等人,1969 年)。另一项研究描述了一种培养严格厌氧菌的滚管法(Hungate,1969 年)。除了这些特定技术外,人们一直在努力开发培养厌氧菌的新方法。例如,一项研究使用准通用培养基打破了临床微生物学中需氧/厌氧细菌培养二分法(Dione 等人,2016 年)。另一项研究采用了微生物培养组学,即在受控环境中培养微生物并分析其代谢活动 (Lagier et al., 2012, 2018)。这些进展有助于我们了解厌氧菌在各种生态系统(包括人类肠道微生物组)中的作用。例如,一项研究表明,可以在无菌小鼠中表征和操纵广泛的个人人类肠道微生物培养物集合 (Goodman et al., 2011)。另一项研究表明,主要肠道发酵厌氧菌的能量来源主要来自碳水化合物 (Salyers, 1979)。总体而言,厌氧菌的培养一直是一个重要的研究领域,对我们了解微生物生态学和人类健康具有重要意义。最初,厌氧菌的培养是通过维持连续严格的厌氧状态实现的。各种研究探索了培养这些微生物的不同方法,包括使用专门的设备和培养基。例如,一项研究采用简化的手套箱程序从人牙龈和小鼠盲肠中分离厌氧菌(Aranki 等人,1969 年)。另一项研究描述了一种培养严格厌氧菌的滚管法(Hungate,1969 年)。除了这些特定技术外,人们一直在努力开发培养厌氧菌的新方法。例如,一项研究使用准通用培养基打破了临床微生物学中需氧/厌氧细菌培养二分法(Dione 等人,2016 年)。另一项研究采用了微生物培养组学,即在受控环境中培养微生物并分析其代谢活动 (Lagier et al., 2012, 2018)。这些进展有助于我们了解厌氧菌在各种生态系统(包括人类肠道微生物组)中的作用。例如,一项研究表明,可以在无菌小鼠中表征和操纵广泛的个人人类肠道微生物培养物集合 (Goodman et al., 2011)。另一项研究表明,主要肠道发酵厌氧菌的能量来源主要来自碳水化合物 (Salyers, 1979)。总体而言,厌氧菌的培养一直是一个重要的研究领域,对我们了解微生物生态学和人类健康具有重要意义。最初,厌氧菌的培养是通过维持连续严格的厌氧状态实现的。各种研究探索了培养这些微生物的不同方法,包括使用专门的设备和培养基。例如,一项研究采用简化的手套箱程序从人牙龈和小鼠盲肠中分离厌氧菌(Aranki 等人,1969 年)。另一项研究描述了一种培养严格厌氧菌的滚管法(Hungate,1969 年)。除了这些特定技术外,人们一直在努力开发培养厌氧菌的新方法。例如,一项研究使用准通用培养基打破了临床微生物学中需氧/厌氧细菌培养二分法(Dione 等人,2016 年)。另一项研究采用了微生物培养组学,即在受控环境中培养微生物并分析其代谢活动 (Lagier et al., 2012, 2018)。这些进展有助于我们了解厌氧菌在各种生态系统(包括人类肠道微生物组)中的作用。例如,一项研究表明,可以在无菌小鼠中表征和操纵广泛的个人人类肠道微生物培养物集合 (Goodman et al., 2011)。另一项研究表明,主要肠道发酵厌氧菌的能量来源主要来自碳水化合物 (Salyers, 1979)。总体而言,厌氧菌的培养一直是一个重要的研究领域,对我们了解微生物生态学和人类健康具有重要意义。总的来说,厌氧菌的培养一直是一个重要的研究领域,对我们了解微生物生态学和人类健康具有重要意义。总的来说,厌氧菌的培养一直是一个重要的研究领域,对我们了解微生物生态学和人类健康具有重要意义。
在经济学方面,开发300个新项目将产生大约8,000个新工作岗位和约3.4B美元的资本部署。产生有意义的影响将需要在全国范围内将这些操作部署在大规模上,并且在AD达到到期水平之前,还有很多工作要做。,但凭借其雄心勃勃的政策,纽约 - 能源视觉的家乡可以领导指控,证明能源愿景总裁Matt Tomich。AD是一个复杂的生物学过程,但Digester Doc和首席执行官Valkyrie Analytics的Charlton简单地解释了该概念的要旨:“碳不消失;它采取了不同的形式。它作为二氧化碳,土壤中的碳或生物物质存在。话虽如此,如果我们将通过AD捕获的能量转换为甲烷,我们会防止在将材料应用于土地或其他地方时发生的排放。,而消化池内部甲烷的碳越多,排放量就越少。”随着技术的发展,它会提供改进,包括更熟练的碳转换过程多年来,该行业已将转化效率从30%或35%提高到65%或70%。排放率的捕获率现在为99.9%,进一步提高了结果。仍然,鉴于有机材料的数量和多样性,这些系统只能独自完成。另一个现实是,AD留下了需要辅助处理方法的消化后残留物。堆肥已成为一种互补的后端技术,进入了众人瞩目的焦点。农业部门越来越多地转向AD。在现场应用之前堆肥消化固体实际上进一步减少了甲烷排放。在她的团队的多项研究中,正在评估消化酸盐应用对土壤过程,作物生产和环境的影响。,虽然堆肥在支撑较小的系统方面非常有用,但具有较大操作的热解或气化可能会更好,并且可以将固体和碳转化为各种产品。“因此,根据您的使用方式,有不同的解决方案,”他说。奶农尤其是发现,通过将肥料作为原料提供,他们可以产生额外的收入,更可持续地管理大量的牛便便,并最终减少其碳足迹。在纽约,通过报告的计算,将大约260个新广告带到奶牛场可以将甲烷从粪便中减少56.5%。作为其潜在价值作为原料获得更多的识别性粪便是一个不断增长的研究兴趣,一个目标是弄清楚如何开发具有成本效益的治疗方法以提高其生物降解性和沼气生产率。加州大学戴维斯分校教授兼空中质量专家Frank Mitloehner说,尽管已经研究了许多治疗方法,但经济学却阻碍了商业化的进展。尽管他和他的同事们参与了表现出希望的项目;他指出了涉及土地应用的堆肥肥料的工作。在其他领域正在进行研究,从自动化到改善沼气生产到多年生草作为原料的潜力。
尽管厌氧消化酸盐含有> 90%的水,但消化酸盐的养分含量高使其在经济和技术上对现有废水处理技术的治疗中的处理。这项研究分别评估了Rhizopus Delemar DSM 905和磷酸盐蓄积生物(PAOS)从消化酸盐中去除营养的可行性。使用根茎DEMAR DSM 905,我们研究了从消化剂供应的培养基和富马酸产生中的养分清除,这是消化治疗的潜在经济策略。培养r。Devemar DSM 905在含有25%(v/v)消化酸盐,Al,Cr,Cu,Cu,Fe,K,Mg,Mg,Mn,Mn,Pb和Zn的浓度的发酵培养基中,分别降低了40、12、74、96、12、12、26、26、26、26、23%,〜18和28%。同样,总磷,总氮,磷酸盐(PO 4 -P),铵(NH 4 -N),硝酸盐(NO 3 -N)和硫的浓度分别降低了93、88、88、97、98、69和13%。同时,补充了25%和15%(v/v)消化的培养物产生了富马酸盐(分别〜11和〜17 g/l)的可比滴度,以消化不供电的对照培养物。使用PAO,我们评估了总磷,总氮,PO 4 -P和NH 4 -N的去除,其中浓度分别降低了86、90%,〜99和100%,分别为60%(v/v)消化。这项研究为微生物从厌氧消化酸盐中去除过量的营养物质提供了其他基础,并有可能从目前主要是治疗的废物流中从这种废物流中恢复未来的水。
摘要:对全球能源危机和环境污染的越来越关注推动了对清洁能源的追求。厌氧技术广泛用于废物处理,也是产生环保能量的一种有希望的手段。其主要产量沼气是一种清洁能源替代品,能够在各种应用中替代天然气。沼气主要包括CH 4(55%-65%)和CO 2(35%-45%),由于CO 2和痕量元素对发动机性能和能源网格的潜在影响而需要纯化。减少CO 2内容不仅可以提高沼气质量,还可以提高其热量价值。虽然努力专注于从厌氧消化过程(AD)过程中恢复所有产品,但其余的CO 2可以在各种行业领域找到使用。本报告旨在评估最新的学术研究和创新解决方案,以从沼气生产中恢复和治疗CO 2,从而强调了澳大利亚红肉行业在其设施中生成CO 2的能力。
在被进食之前,预组件会预先混合。消化器将加热至38°C。每日原料混合物将在25%干物质(DM)和10吨浆液中约为10吨草青贮饲料,在8%DM处。每个的数量将取决于青贮饲料质量,主要是干物质消化率。该广告植物将需要大约70公顷的青贮饲料和1,000头牛的冬季浆液。
摘要浮游植物是水生微生物群落的重要组成部分,浮游植物和细菌之间的代谢耦合决定了溶解有机碳 (DOC) 的命运。然而,初级生产力对细菌活动和群落组成的影响仍然很大程度上未知,例如,好氧不产氧光养 (AAP) 细菌利用浮游植物衍生的 DOC 和光作为能量来源。在这里,我们研究了自然淡水群落中初级生产力的减少如何影响细菌群落组成及其活性,主要关注 AAP 细菌。当光合作用因光系统 II 的直接抑制而降低时,细菌呼吸速率最低,而在没有光合作用抑制的环境光条件下细菌呼吸速率最高,这表明它受到碳可用性的限制。然而,细菌对亮氨酸和葡萄糖的吸收率不受影响,这表明当低初级生产力限制 DOC 可用性时,提高细菌生长效率(例如由于光异养)有助于维持整体细菌产量。细菌群落组成与光强度紧密相关,主要是由于光依赖性 AAP 细菌的相对丰度增加。这一观点表明,细菌群落组成的变化不一定反映在细菌生产或生长的变化中,反之亦然。此外,我们首次证明光可以直接影响细菌群落组成,这是浮游植物-细菌相互作用研究中被忽视的一个主题。
本文报告了对生物塑料厌氧降解和转化为沼气的微生物适应的新研究结果。进行了三种顺序的厌氧消化(AD)运行,以支持微生物适应于两种不同的生物塑料,基于淀粉的(SBS)和多乳酸(PLA)。SBS和PLA生物塑料的AD被接种物适应AD后对基板的适应而受到青睐。sbs转化为沼气增加了52%(从94 nl kgvs -1),与淀粉降解细菌的生长相关,例如氢孢子虫,卤代菌和卤素。PLA厌氧降解增长了97%(从395至779 NL Miogas KGVS -1),这与已知的Pla降解者(如替代性降解剂)(如替代菌粒,甲烷疗法生物杆菌)和tepidanaerobacter的适应性有关。微生物过度化似乎是一种合适的低成本策略,可以通过促进其厌氧生物降解并转化为沼气来增强生物塑料循环。
sensabac-DHC - 厌氧脱氯培养物,用于LCC地下水损伤产品Sensabac-DHC的生物学培养物是实验室富集的微生物培养物,其中含有含有该物种的Dehalococcoides McCartyi,并具有高还原性的LCC降低潜力。实践经验表明,在自然条件下和生物刺激条件下,地下水中通常在地下水中积累了大量积累。生物提示可确保在厌氧条件下这些LCC成分也可以快速有效地处理。应用生物强调适用于在自然条件下无法检测到LCC降解的地点,或者尽管在地下水中有适当的环境条件和基板供应,但在自然条件下未检测到LCC降解。使用生物调节培养物是有效的,在它们已经有足够的环境和有利的辅助基板供应的情况下,地下水中的辅助基板供应有效。如果条件尚不适合生物提高,则通常可以通过添加适当的底物来提前调整这些条件。使用的脱氯培养物来自具有强烈的脱氯和降解相关酶TCEA,VCRA和BVCA的高基因拷贝数。一旦下达订单,准备了用于相应现场应用的尺寸的生物鼓声解决方案,并在实验室中孵育数周。培养物受环境条件和微生物生长反应的持续监测。通过QPCR分析进行质量控制,以评估TCEA,VCRA和BVCA的基因拷贝数,以确保生物学培养具有所需的降解潜力。一旦达到了相应的高基因拷贝数,就可以使用培养物,并在厌氧条件下渗入地下水中的地下水。