Pierce Aerospace 由 Aaron Pierce 介绍 联系方式:info@pierceaerospace.net Pierce Aerospace 支持 ASTM F38 远程 ID 标准,以符合 FAA 规则制定。该标准支持广播(通过 WiFi 或蓝牙)和网络远程 ID 功能。该标准提供了一种适应性方法,用于在整个行业中分发有效的远程 ID 功能,并通过广播和网络选项提供冗余,而对制造商、运营商和服务提供商几乎没有负担。Pierce Aerospace 的重点是构建无人机查询系统 - 产品名称 Flight Portal ID (FPID)。FPID 超出了 ASTM 标准的范围,但它通过标准的操作和弹性直接支持安全性。FPID 的作用是充当商业、国家安全、执法和国防用户的可互操作身份真实性渠道。它支持后端数据服务,包括政府或私人白名单,通过 API 来验证身份。它旨在实现各种商业和国防技术的互操作性。 FPID 的功能与政策决策无关。FPID 是一种双重用途产品,支持国防和商业用户。在 Pierce Aerospace 的 2018 年美国空军 SBIR 中,FPID 被证明适用于防空生态系统。Pierce Aerospace 随后继续与美国陆军合作,并于 2019 年秋季与陆军一起进行早期的 FPID 和 ASTM 标准蓝牙广播开发测试。FPID 充当数字空域实用程序,为政府机构和当局、C-UAS 技术和纯商业运营(包括 UTM)提供可互操作的支持。随着 FPID 和行业互操作规模的扩大,该服务同时支持各种应用程序的身份识别 - 例如独立移动应用程序、UTM 和空域安全技术。这种互操作对于支持大量商业活动和空域安全运营至关重要。通过来自各个利益相关者的数十封支持/整合信函,证明了对 FPID 的积极支持。FPID 提供了一种扩展运营商法规遵从性并在无人机领域提供安全保障的方法。作为一种实用工具,它专为大量飞机和用户而设计。FPID 不是 UTM,不是“前端”应用程序,也不是武器。FPID 确实支持更广泛的空域生态系统、其不同的技术和不同的利益相关者。ASTM F38 远程 ID 标准对于推动行业迈向商业化成功的下一步至关重要,并为相邻或底层技术(如 FPID)提供了一个坚实的基础,可用于解决 NAS 中的安全和身份验证问题。皮尔斯航空航天公司很高兴与政府和业界合作,在 2020 年继续部署 FPID 和 ASTM 远程 ID 标准的早期实例。
使用这些实践有助于促进产品生命周期阶段之间的平稳过渡。飞机中的电线织机通常由数千条电缆组成,通常使用计算机辅助设计(CAD)工作站手动用工程师手动用个人知识和如何通过结构路由电缆将电缆路由。必须满足许多必须满足的调控和功能设计规则(例如弯曲半径,电磁敏感性,支撑支架的放置,防止腐蚀和磨损的保护,电缆捆绑,电缆之间的交叉点,电缆发散之间的交汇处等)。路由过程是高度重复的,工程师之间的设计输出可能会有很大差异。电线设计通常与原理结构设计并行进行。整个设计过程的迭代性质是,结构性变化很容易发生,需要为任何受影响的电气电缆耗尽时要耗时。以类似的方式,飞机中的液压管和气管被手动路由,并由不同的设计规则支配。路由过程的重复,规则管理的性质使其成为应用基于知识系统的主要候选人。
摘要:飞机维护已被确定为航空业许多高风险领域的一个关键关注点;仍然是商业航空运输业中许多事故和严重事件的偶然/促成因素。本研究的目的是回顾和分析 2003 年至 2017 年期间发生的与飞机维护相关的事故和严重事件,以更好地了解因果因素和促成因素。为此,编制了与维护相关的事故和严重事件数据集,然后通过主题分析方法进行定性分析。使用 NVivo 软件对这些事件进行编码可以开发分类法 MxFACS。然后由主题专家评估编码输出,并确定评分者间一致性值以证明研究过程的严谨性。随后,根据事件与已知事故类别(如失控、跑道偏离)的关系对事件进行了评估。发现最常见的维护事件后果是跑道偏离和空中返航,第二级类别与发动机和起落架系统故障有关。最大的维护因素问题是“维护程序不足”和“检查未发现缺陷”。在死亡人数方面,“碰撞事件”是最突出的后果,“发动机相关事件”是最重要的事件,“维护程序不足”是最令人担忧的维护因素。该研究的结果可以与现有的风险分析方法结合使用,并使利益相关者能够开发通用或定制的领结。这可能识别系统中现有的障碍以及弱点,从而能够在组织和行业范围内制定缓解策略。
摘要 :增材制造 (AM) 是一项尖端技术,可提供高达 100% 的材料效率和显著的重量减轻,这将对飞机燃料消耗产生积极影响,并且具有很高的设计自由度。因此,许多航空航天公司都在考虑实施 AM,这要归功于这些好处。因此,本研究的目的是帮助航空航天组织在不同的 AM 技术中进行选择。为此,通过半结构化访谈收集了 (8) 位 AM 领域专家的原始数据,并与二手数据进行交叉引用,以确定在选择用于航空航天应用的 AM 设备时需要考虑的关键因素。专家们强调了四种 AM 技术:激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EBPBF)、线弧 AM (WAAM) 和激光金属沉积 (LMD),认为它们最适合航空航天应用。本研究的主要成果是开发了一个比较框架,帮助公司根据其主要业务或特定应用选择 AM 技术。
• AE 3501 Aerospace Systems Engineering Practice Prereqs: ME2150 and ME2700 and ME2911(C) and AE2500 and AE2550 • AE 3511 Spacecraft Engineering Practice Prereqs: AE3501 • AE 3520 Aerodynamics Prereqs: AE2500 and MA3160 and (ME2911 or MEEM2911) • AE 4540航空航天推进预告:(AE3520和AE4530)或MEEM3201或ME3201•AE 4550号航天器热工程预制剂:AE3520和AE3520和AE3521•AE 4560 AE 4560 AEROPSACE材料和结构材料和结构材料:AE2550和MEEM2550和MEEM21550和MEEM21550•MEEM21550•MEEM21550•航天器动力与对照(SD&C)预言:AE4570(C)和(MEEM3750或ME3750)•ME/MEEM 4202施加的流体机械和热传输(3)prereqs:MeEM3201和(MEEM3201和(MA3520(MA3520)(MA3520(C)或MA3521(C)或MA3521(C)或MA35530(C)或MA35530(C)或MA3530(C)060(C)或MA3530(C)(C)流体工程。(3) Prereqs: MEEM3201(c) • ME/MEEM 4230 Compressible Flow/Gas Dynamics (3) Prereqs: MEEM3201 • ME/MEEM 4701 Analytical & Experimental Modal Analysis (4) Prereqs: MEEM3750 • ME/MEEM 4720 Space Mechanics (3) Prereqs: MEEM2700 o or AE 4570 Space Mechanics Prereqs: MEEM/ME 2700•我/MEEM 4820航空航天的介绍(3)预先QS:MEEM3201•ME/MEEM 5180复合材料的机制(3)PREREQS:MEEM4901(C)(C)或ENT4950(C)或ENT4950(C)•MSE 4430复合材料(MSE 4130•MEEM/MESMSE/MES21100或MES210000或MES210000•MES210000或MES210000)材料的中间力学(3)预言:MEEM2150•ME/MEEM 4170材料在机械学中的失败(3)prereqs:MEEM3501或MEEM3400•ME/MEEM 4180工程生物力学(3)PREREQS:MEEM2150和MEEM2150和MEEM2700•MEEM2700•MEEM2700•MEEM 4201(3)我/MEEM 4650质量工程(3)prereqs:MEEM3600(C)和(MA3710或MA3720或MA2710或MA2710或MA2720)•ME/MEEM 4702冲击和振动(3)preereqs :( Meem3911和Meem3750)和Meem3750和Meem3750)或Meem4775•Meem4775•MeEm/Meem 4770 andics and Sotionics and Quist:3) MA2160•ME/MEEM 4705机器人技术介绍(4)先进QS:MEEM3750•ME/MEEM 4707自主系统(3)PREREQS:MEEM3750或MEEM3750或MEEM4700或MEEM4775或MEEM47775•MEEM 4775•ME/MEEM 4775分析和设计分析和设计分析系统(4)PREPERE SYSTER(4)PERESE SYSTER(4)PREEMS(4)PERERES(4)PERERES(4)PEREREQS(4)PREPERS(4)编写。
我们在本报告中描述了推动我们业务和未来业绩的许多趋势和其他因素。此类讨论包含《1934 年证券交易法》(经修订)(《交易法》)第 21E 条所定义的前瞻性陈述。前瞻性陈述涉及管理层打算、期望、项目、相信或预期未来将发生或可能发生的活动、事件或发展,包括与拟议将公司先进材料业务分拆为独立上市公司以及拟议分离自动化和航空航天业务相关的陈述。它们基于管理层根据过去的经验和趋势、当前经济和行业状况、预期未来发展和其他相关因素做出的假设和评估,其中许多因素难以预测且不受我们控制。它们不是对未来业绩的保证,实际结果、发展和业务决策可能与我们的前瞻性陈述所设想的结果、发展和业务决策存在重大差异。除非适用证券法要求,否则我们不承诺更新或修改我们的任何前瞻性陈述。我们的前瞻性陈述还受重大风险和不确定性的影响,包括持续的宏观经济和地缘政治风险,例如 GDP 增长放缓或衰退、供应链中断、资本市场波动、通货膨胀和某些地区冲突,这些风险可能会影响我们的短期和长期业绩。此外,我们无法保证本演示文稿中提出的任何计划、举措、预测、目标、承诺、期望或前景能够或将会实现。这些前瞻性陈述应结合本演示文稿中包含的信息、我们的 10-K 表格和向美国证券交易委员会提交的其他文件进行考虑。本文所述的任何前瞻性计划都不是最终版本,可能会随时修改或放弃。
任务系统总部位于爱荷华州锡达拉皮兹,提供安全军事通信、导航和制导;导弹驱动;模拟、训练和射程仪表;战略指挥和控制;无人机系统;电子战;弹射座椅和推进;情报、监视和侦察;以及空间解决方案等解决方案。
摘要:自1960年代NASA的Apollo计划成立以来,数字双胞胎(DT)技术已经显着发展,在航空航天行业及其他地区至关重要。本文探讨了DTS的历史发展,从早期的“物理双胞胎”过渡到由物联网(IoT),机器学习和数据分析的进步驱动的复杂虚拟模型。在航空航天中,DTS通过实现实时监控,预测性维护和对飞机和航天器系统的高保真模拟来改善产品生命周期管理,运营效率和成本效益。该研究概述了DTS物理现实,虚拟表示及其相互联系的核心组成部分,并提出了现实世界的应用,例如优化重型燃料飞机发动机和潮汐涡轮机。尽管有进步,但仍然存在诸如数据集成,传感器可靠性和实时处理之类的挑战。尽管如此,DT技术的持续发展有望提高多个行业的绩效,安全性和创新。本文通过强调数字双胞胎在技术和工业实践的未来中的变革性作用来结束。
低CTE(热膨胀系数低)合金被广泛需要,其中高维稳定性针对温度变化至关重要。我们提供一系列量身定制的低CTE合金,以满足客户的特定温度范围要求。
可持续航空:更多电力和氢动力航空航天 氢气作为燃料被认为是实现未来可持续航空的重要途径。对于航空应用而言,氢气有几个关键优势:它可以消除飞行中和整个生命周期的碳排放。将其用于燃料电池可以消除氮氧化物和颗粒物。当在涡轮发动机中燃烧时,只要燃烧系统得到优化,就可以实现非常低的颗粒物排放量,同时还可以减少氮氧化物排放量。然而,水蒸气排放需要谨慎管理。总体而言,与传统煤油燃料飞机产生的非二氧化碳排放(高空现象)相比,在热力(燃烧)发动机中使用氢气预计也将带来显著的益处。