原子力显微镜(AFM)是一种强大的成像技术,可实现具有纳米级分辨率的单个生物分子的结构表征。afm具有独特的能力,可以在生理条件下在其本地状态中成像生物分子,而无需标记或平均。DNA已从AFM进行了广泛的成像,从早期的质粒中构象分子性研究到质粒中的构象分子研究,到近期对单个DNA分子内凹槽深度之间分子内变异的检查。原位图像动态生物学相互作用的能力也允许各种蛋白质和治疗性配体与要评估的DNA的相互作用 - 提供对结构组装,灵活性和运动的见解。本综述概述了AFM成像中的创新和优化如何提高我们对DNA结构,力学和相互作用的理解。这些包括对DNA的二级和三级结构的研究,包括如何受到其与蛋白质相互作用的影响。还通过与关键的化学治疗配体(包括目前在临床实践中使用的那些化学治疗配体)在成像DNA中的使用来探索AFM作为转化癌症研究的工具的更广泛作用。
检测磁振子及其量子特性,尤其是在反铁磁 (AFM) 材料中,是实现纳米磁性研究和节能量子技术发展中许多雄心勃勃的进步的重要一步。最近基于超导电路的混合系统的发展为设计利用不同自由度的量子传感器提供了可能性。在这里,我们研究了基于二分 AFM 材料的磁振子-光子-传输子杂化,这导致了二分 AFM 中传输子量子比特和磁振子之间的有效耦合。我们展示了如何通过超导传输子量子比特的 Rabi 频率来表征磁振子模式、它们的手性和量子特性,例如二分 AFM 中的非局域性和双模磁振子纠缠。
-ellipsometer -Transmittance -Alpha -step -micro PL系统-Raman光谱 - ft -ir光谱仪-Probe Station -4 -Probe板电阻器 - 透射式电导率分析仪-SEM -sem -sem -contact角度分析仪-AFM afm
摘要在2014年导致肠病毒D68(EV-D68)全球出现的因素是儿童急性松弛性脊髓炎(AFM)的原因。为了研究病毒传播性或种群敏感性的潜在变化,我们测量了2006年,2011年和2017年在英格兰收集的血清样品中EV-D68特异性中和抗体的血清阳性。使用CATALYTIC数学模型,我们估计10年研究期内的年度感染概率大约增加了50%,与2009年左右的进化枝B的出现相吻合。尽管传播的增加,血清阳性数据表明,该病毒在AFM爆发之前已经广泛循环,并且按年龄划分的感染增加无法解释观察到的AFM病例的数量。因此,还需要需要对神经病的获取或增加神经病的发生才能解释AFM爆发的出现。我们的结果提供了证据,表明肠病毒表型的变化会导致疾病流行病学的重大变化。
摘要:最近的研究表明,长期意识障碍 (PDOC) 是由关键皮质和皮质下网络的结构和功能障碍引起的,包括默认模式网络 (DMN) 和前脑中脑回路 (AFM)。然而,这种损伤的具体机制仍然未知。已知纹状体-苍白球通路的中断会导致丘脑的过度抑制和皮质缺乏兴奋,这是 PDOC 的特征。在这里,我们在 rs-fMRI 数据上使用光谱动态因果模型和参数经验贝叶斯来评估 PDOC 中的 DMN 变化是否是由 AFM 中断引起的。PDOC 患者表现出 AFM 内的整体耦合减少,具体而言,纹状体的自我抑制减少,同时纹状体与丘脑的耦合减少。这导致 AFM 对 DMN 的抑制作用消失,主要由包括楔前叶和下顶叶皮质在内的后部区域驱动。反过来,DMN 显示出楔前叶和内侧前额叶皮质的自我抑制中断。我们的结果在皮层下水平上为前部中脑回路模型提供了支持,但强调了 AFM 对 DMN 的抑制作用,而 DMN 在 PDOC 中被破坏。
摘要:原子力显微镜(AFM)是成像分子,大分子复合物和具有纳米分辨率的纳米颗粒的强大技术。但是,AFM图像被所使用的尖端的形状扭曲。如果可以通过扫描特征比尖端更明显的样品来确定尖端形状,并且可以纠正这些扭曲。在这里,我们提出了3D DNA折纸结构,作为尖端重建和图像校正的基准。我们的信托在广泛的条件下是稳定的,并且在不同高度上具有急剧的步骤,从而使可靠的尖端重建能够从几乎十个基金会中重建。DNA折纸很容易与生物学和非生物学样品编码,与多晶样品相比,尖端顶点的精度更高,并显着提高了图像确定的横向尺寸的准确性。我们的信托因此可以为广泛的应用实现准确而精确的AFM成像。关键字:原子力显微镜,AFM,DNA折纸,图像校正,尖端重建
摘要:人们越来越关注纳米力学作为各种病理的标志物的应用。原子力显微镜 (AFM) 是一种可用于量化活细胞纳米力学特性的技术,具有高空间分辨率。因此,AFM 提供了追踪活细胞中细胞骨架重组变化的可能性。两种主要细胞骨架成分(即肌动蛋白丝和微管)的结构、组织和功能受损会导致严重影响,从而导致细胞死亡。这就是为什么这些细胞骨架成分是抗肿瘤治疗的目标。本综述旨在描述有关 AFM 追踪抗肿瘤药物作用引起的活细胞纳米力学特性变化的能力的知识,这些变化可能转化为抗肿瘤药物的功效。
摘要。表面能量表征对于设计可靠的电子设备的制造过程很重要。表面能量受表面功能和形态等各种因素的影响。由于高表面与体积比率,纳米级的表面能与散装的表面能有所不同。然而,由于表征有限的表征量有限,因此无法将表面能(如无梗液或刷毛方法)表征表面表征的常规方法。最近,已经提出了使用原子力显微镜(AFM)在纳米级上进行表面能表征,并提出了具有峰值力量定量纳米力学映射(PF-QNM)成像模式的表面能。纳米级AFM尖端测量纳米级的粘附力,该粘附力通过预校准的曲线转化为表面能。先前已经报道了使用AFM与PF-QNM方法对纳米级金属样品的成功表面能表征。这项微型审查讨论了使用PF-QNM方法使用AFM在纳米级表面表征的最新进展。引入了PF-QNM模式的基本原理,并总结了表面能表征的结果。因此,讨论了纳米级表面能量表征的未来研究方向。
人们已经使用各种方法在微米和纳米尺度上研究了二维材料的黏附性能,研究了材料与金属和氧化物基底的黏附性能,以及二维材料之间的黏附性能。[5–7] 特别是,纳米机械原子力显微镜 (AFM) 技术已被用于直接测量石墨烯和针尖材料之间的相互作用。[8,9] 在用石墨材料涂覆 AFM 针尖方面取得的进展不仅提高了耐磨性和电性能,[10–14] 而且还为探测二维材料之间的层间相互作用提供了可能性。 Li 等人对约 10 纳米石墨包裹的 AFM 针尖与 MoS 2 和 h-BN 薄片之间的黏附性能进行了定性比较。[15] 使用针尖附着的二维晶体,Rokni 和 Lu 最近