图 2 . a) 新鲜状态下 S-1 SAM 的 AFM 形貌图像。b) 对 SAM S-1 施加 0.6 V 电化学电位 1 分钟后获得的 SAM S-2 的 AFM 形貌图像。c) 对 SAM S-1 施加 +1.5 V 电化学电位 10 分钟后获得的 SAM S-2 的 AFM 形貌图像。d) 新鲜制备的 SAM S-1 上水滴的静态图像。e) 对 SAM S-1 施加 +0.6 V 电化学电位 1 分钟后获得的 SAM S-2 上水滴的静态图像。f) 对 SAM S-1 施加 +1.5 V 电化学电位 10 分钟后获得的 SAM S-2 上水滴的静态图像。 S-1 SAM 的 XPS 高分辨率 Si 2p 光谱(g)新鲜制备、(h)在 +0.6 V 下氧化,和(i)在 + 1.5 V 下氧化。
(h)TCCA AD CF–2020–41的例外 (1) 当TCCA AD CF–2020–41提及其生效日期时,本指令要求使用本指令的生效日期。 (2) TCCA AD CF-2020-41的A段要求修改现有的飞机飞行手册(AFM),“纳入2020年9月10日AFM修订版15-A中的补充21—29000英尺以上的操作”,本指令要求修改现有的AFM,纳入空客A220-100飞机飞行手册出版物BD500-3AB48-22200-00和空客A220-300飞机飞行手册出版物BD500-3AB48-32200-00的补充21—29000英尺以上的操作,两者均为2020年10月16日第016期。 (3) TCCA AD CF-2020-41的A段规定“通知所有飞行机组新的补充,然后相应操作飞机”,本指令不要求采取那些行动,因为那些行动已经是现行FAA操作规章所要求的。 (4) 当TCCA AD CF-2020-41的B.和C.段规定在超过AFM N1限制后通过内窥镜检查每台发动机第一级轴向低压压缩机(LPC)转子是否有损坏迹象的程序时,本指令不要求采取该行动。 (5) 当TCCA AD CF-2020-41的C.段描述了可选安装健康管理单元报告以监测N1超标时,本指令不包括该选项。
(ad) 光学、(eh) 顶视图 SEM;(il) AFM 和 (mp) 175 微米蓝宝石上层 ITO 的导电 AFM 图像,底层 Al 2 O 3 缓冲层厚度不同:(a、e、i、m) 0 nm;(b、f、g、n) 20 nm;(c、g、k、o) 40 nm 和 (d、h、l、p) 60 nm。(a) 至 (d) 中的光学图像的比例尺为 100 μm,其他图像 (e) 至 (p) 的比例尺为 300 nm。
图1。核刚度在感染进展过程中降低。(a)原子力显微镜(AFM)悬臂的示意图,在细胞的核区域上有胶体探针。(b)在8 hpi下方AFM悬臂下方的受感染细胞的明亮场显微镜图像。核外围用虚线的白线划定。通过落荧光鉴定出ICP4的感染VERO细胞。另请参见补充电影1。(c)对未感染和HSV-1 ICP4-EYFP感染细胞的AFM分析在4、8和10 HPI(分别为n = 255、50、129和129)上进行。在每个细胞上进行了十个连续的力曲线测量值,并使用HERTZ模型来计算平均年轻的模量。使用Tukey的测试确定统计显着性。所示的显着性值表示为****(p <0.0001)和*(p <0.05)。不重要的差异(p≥0.05)未标记。
我们通过在透射电子显微镜中使用选定的区域电子衍射(SAED)研究了各种独立的AFM膜(type-a,b,c)的结晶度,请参见补充图S1.1A,C,e。A型,B膜是在SAO涂层的α-AL 2 O 3和SRTIO 3底物上生长的未封闭的α-FE 2 O 3层,而C型C膜是缓冲α-FE 2 O 2 O 2 O 3层在SAO涂层的Srtio Srtio 3 sibtrates上生长的3层。缓冲液由老挝和STO层制成(有关详细信息,请参见方法)。SAED模式证实A型膜中的AFM层是多晶的,而B型膜中的AFM层是单个晶体。type-C的缓冲膜不仅是结晶的,而且由于与缓冲液中的老挝层的不匹配,还具有Moiré图案。此外,通过POL图分析和𝜙 -Scans证实了缓冲膜中各个层的外延生长,在补充图S1.2中进行了说明。最后,在补充图S1.1b,d,f中显示的光学显微镜图像表明,未固定的A型,B膜通常会构成更多的裂纹,从而导致较小的完整膜区域。相比之下,缓冲型C膜通常形成较大的面积样品,裂纹较少,这对于实现强弯曲的AFM结构以探索磁结构效应很重要。
AFM Doc. No. 7.01.15-E 的第 5 版经 EASA 批准,授权编号为 DOA No. EASA.21J.052 。
图 2。通过离子交换剥离块状 MMT 和真空过滤 MMT 薄片分散体来制造独立式 MMT 膜的过程。(a) 块状 MMT 粉末。(b) 在红色激光束下对块状粉末进行离子交换剥离后形成的 MMT 薄片水分散体。(c) 通过真空过滤薄片分散体形成的独立式 MMT 膜。(d) MMT 的 XRD 图案,显示 (001) d 间距为 12.3 Å。(e) 剥离的 MMT 薄片的 AFM 图像和 (f) 剥离的 MMT 薄片的相应 AFM 高度分布,显示单层厚度。
四方重费米子超导体 CeRh2As2 (Tc=0.3K) 对 Bkc 表现出 14T 的极高临界场。它在超导态之间经历场驱动的一级相变,可能从自旋单重态转变为自旋三重态超导。为了进一步了解这些超导态和磁性的作用,我们利用中子散射探测 CeRh2As2 中的自旋涨落。我们发现动态 ðπ;πÞ 反铁磁 (AFM) 自旋关联具有各向异性的准二维关联体积。我们的数据将相应 N'eel 级的交错磁化强度的上限设置为 0.31μB,T=0.08K。密度泛函理论计算将 Ce4f 电子视为核心态,表明 AFM 波矢连接费米面的很大一部分区域。我们的研究结果表明当ℏω<1.2meV时CeRh2As2中的主要激发是磁性的,并且表明CeRh2As2中的超导性是由与近似量子临界点相关的AFM自旋波动介导的。
图 1. (4,4-DFPD) 2 PbI 4 薄膜的制备和通过 XRD 和 AFM 进行表征。a) 通过滴铸、旋涂和旋涂并伴有真空极化处理沉积 (4,4-DFPD) 2 PbI 4 2D 钙钛矿薄膜的示意图。b) 制备的薄膜的 XRD 图案。插图显示了 Williamson-Hall 图,用于分析薄膜中的应变无序性。通过 c) 滴铸、d) 旋涂和 e) 旋涂并伴有真空极化处理沉积的薄膜的 3D 表面形貌 AFM 图像。