摘要 到目前为止,已经进行了大量分析以发明严重急性呼吸综合征冠状病毒 2 (SARS‑CoV‑2) 的适当治疗靶点。本综述描述了该病毒的种类和治疗策略,并提到了一些特定药物。其中,柴胡皂苷对 SARS‑CoV‑2 的非结构蛋白 15 和刺突糖蛋白具有亲和力。发现核苷酸抑制剂如索非布韦、利巴韦林、加利地西韦、瑞德西韦、法匹拉韦、头孢呋辛、替诺福韦和羟氯喹 (HCHL)、塞曲布韦、YAK 和 IDX‑184 可有效结合 SARS‑CoV‑2 RNA 依赖性 RNA 聚合酶。在抗疟和抗炎类药物中,氯喹及其衍生物 HCHL 已被美国食品和药物管理局批准用于 SARS‑CoV‑2 感染的紧急治疗。根据之前发表的文献,我们已指出其他药物,如抗病毒类药物法匹拉韦和洛匹那韦/利托那韦、抗病毒类药物血管紧张素转换酶 2(肾素-血管紧张素系统抑制剂)、抗病毒类药物瑞德西韦(RNA 聚合酶抑制剂)、抗炎类药物千金藤素等。此外,对具有相关靶点的药物重新定位候选药物进行评估对于病毒缓解也具有重要意义。
1 “IPSOS (2024),2024 年国际妇女节:全球对妇女领导力的态度”,超链接应为:https://www.ipsos.com/sites/default/files/ct/news/documents/2024-06/International-Womens-day-2024-report.pdf 2 反数字仇恨中心 (2022) 非自愿独身者圈:揭露进入非自愿独身者社区的途径及其对妇女和儿童造成的危害,https://counterhate.com/wp-content/uploads/2023/08/CCDH-The-Incelosphere-FINAL.pdf 3 https://ethicalsource.dev/blog/ai-and-gender-based-violence/ ; https://www.npr.org/2023/06/08/1180772665/tennis-social-media-ai-french-open-swiatek-stephens 4 Marganski, AJ, & Melander, LA (2021)。公共和私人领域中针对妇女和女孩的科技暴力:从敌人到盟友。《翡翠国际科技暴力和虐待手册》(第 623-641 页)。翡翠出版有限公司
a 作物遗传育种与综合利用教育部重点实验室,油料作物研究所,豆科作物遗传与系统生物学中心,福建农林大学农学院,福州,中国;b 水稻生物学国家重点实验室,中国农业科学院,中国水稻研究所,浙江,中国;c 国家生物技术和基因工程研究所 (NIBGE),巴基斯坦费萨拉巴德;d 扬州大学园艺与植物保护学院园艺系,扬州,中国;e 塞浦路斯理工大学农业科学、生物技术与食品科学系,塞浦路斯莱梅索斯;f 西澳大利亚大学 UWA 农业研究所,澳大利亚珀斯克劳利;g 作物多样化与遗传学,国际生物盐渍农业中心,阿拉伯联合酋长国迪拜; h 印度海得拉巴国际半干旱热带作物研究所 (ICRISAT) 基因组学和系统生物学卓越中心;i 澳大利亚默多克大学国家农业生物技术中心默多克作物和食品创新中心
这项研究通过揭示膀胱 - 叶片免疫屏障的存在和功能机制来扩展尿路中粘膜免疫的传统理解。这些发现解释了为什么UTI主要发生在膀胱中,而Urosepsis主要与肾脏感染有关。此外,这项研究提供了巨噬细胞症的第一个体内证据和Mets的形成,为探索组织驻留巨噬细胞的功能作用和命运开辟了新的途径。
利什曼病是由Leishmania属的强制性细胞内原生动物寄生虫引起的一组被忽视的热带媒介传播疾病。目前,由于其细胞毒性,成本,痛苦的给药途径,长期治疗持续时间,局部效率和高耐药性风险,因此标准化学疗法面临挑战。为了克服这个问题,已经制定了新的干预方法来治疗利什曼病。宿主指导的免疫疗法是一种新颖的方法,涉及宿主衍生的生物分子的过继转移,以增强保护性细胞免疫的自然力量。这恢复了效应细胞的功能,使它们能够清除细胞内的杂物并导致患者从感染中恢复。这种方式比常规治疗的优点包括较少的细胞毒性,短暂的住院治疗,可负担性和对耐药寄生虫菌株的效率更好。几项研究报告了该治疗模型对耐药性利什曼原虫物种的效率更好。但是,当前的知识和证据非常不足以实施该代理人来治疗任何形式的利什曼病。本评论旨在表明这种对利什曼病的免疫治疗剂的效率。The discussion has focused on major pro-in fl ammatory cytokines (interferon-gamma, interleukin-12, and granulocyte-macrophage colony- stimulating factors), immune cells (dendritic and mesenchymal stem cells), and monoclonal-antibodies (anti-interleukin-10, anti-interleukin-4, and immune checkpoint inhibitory分子)。我们的发现表明,这种治疗方法有可能成功地治疗,并通过减少常规治疗的不良影响来改善临床结果。这表明将来将这种治疗方式作为替代策略的未来部署。但是,它需要使用当地动物模型进行广泛的临床试验,以反映典型的宿主免疫学针对利什曼病,以选择最保护性候选药物。
蚊子(Diptera:culicidae)是现有180-220万年前存在的主要节肢动物群体(Gabriel等,2014; Bird and Mc Elroy 2016; Benelli and Durggan 2018; Hillary and Ceasar and Ceasar 2021)。蚊子属于两个亚家族(Gabriel等人,2014年):Anophelinae(Anopheles)和Culicinae(Aedes,culex,使用的油脂和曼氏菌),由于其广泛的发生,对人类和动物构成了严重威胁。这两个亚家族是向登革热,chikungunya,Zika,Zika,Zika,Zika,Zika,Mallaria,疟疾,日本脑炎和丝虫病之前传播疾病的媒介(Gabriel等,2014; Bird and Mc Elroy 2016; Benelli and McElroy 2016; Benelli and Durggan 2018; Hillary and Ceasar and Ceasar 20221; obembe et; obembe et; obembe et;他们危及世界上热带和亚热带地区的人们的生命。已经证实,由于这些疾病传播的蚊子,世界一半人口的风险更高(WHO,2015年)。
结果:RNA测序将AMBP识别为CAVD的关键调节剂。CAVD患者的AV和高胆固醇饮食(HCD)诱导的APOE - / - 小鼠的AV中增加了ABP。体内,AMBP过表达显着降低了HCD诱导的AV钙化和纤维化。在体外,AMBP敲低的成骨标记物,Runx2和Osterix升高,并促进了由成骨培养基(OM)诱导的瓣膜间质细胞中的钙沉积,而AMBP过表达反向这些影响。从机械上讲,AMBP通过竞争性结合FHL3的锌指域,抑制了OM诱导的ERK1/2(P-ERK1/2)和JNK(P-JNK)的磷酸化。这种相互作用破坏了FHL3在防止P-ERK1/2和P-JNK的泛素蛋白介导的降解中的保护作用。P-ERK1/2和P-JNK抑制剂和激动剂证实,AMBP对CAVD的保护作用是通过这些途径在体内和体外介导的。
有力的证据表明,重塑肠道菌群可能是对抗帕金森氏病(PD)的有效方法。蝎子毒液耐热合成肽(SVHRSP)是从蝎子毒液中发现的合成肽,在多种PD模型中显示出有效的神经保护作用。但是,潜在机制尚不清楚。在这项研究中,我们证明了SVHRSP有效地减弱了胃肠道功能障碍,并恢复了烤面包酮酮诱导的PD小鼠模型中的微生物群组成。微生物群的耗竭和FMT验证的是,恢复的肠道菌群对于针对Rotenone PD小鼠中多巴胺能神经变性的SVHRSP介导的神经保护是必需的。此外,SVHRSP肠道肠道微生物群依赖性地减弱了BBB损伤,小胶质细胞激活和基因在烤面包酮治疗的小鼠中促炎性因子的基因表达。从机械上讲,SVHRSP降低了血清和脑组织中LPS和HMGB1的浓度,从而抑制了紫红酮治疗小鼠大脑中TLR4/NF-κB信号传导途径。一起,我们的发现提供了关于SVHRSP诱导的PD神经保护的机制的新鲜观点。
欧洲绿色协议旨在减少农药的使用,特别是开发生物防治产品以保护农作物免受疾病的影响。的确,使用显着量的化学物质对环境产生负面影响,例如土壤微生物生物多样性或地下水质量以及人类健康。葡萄藤(Vitis Vinifera)被选为第一个目标作物之一,因为其经济重要性及其对杀菌剂的依赖,以控制全球主要的破坏性疾病:灰色霉菌,柔软和白粉病。壳聚糖是一种从甲壳类外骨骼中提取的生物聚合物,在包括葡萄藤在内的许多植物物种中已被用作生物防治剂,以针对多种隐脂性疾病,例如唐尼霉菌(plasmopara viticola),粉状降落(elysiphe necator)和灰色霉菌(bilyea)和灰色霉菌(Brighodis)(byeaea)。但是,其作用方式的确切分子机制尚不清楚:它是直接的生物农药效应还是间接启发活性,还是两者兼而有之?在这项研究中,我们研究了六个具有不同程度的聚合(DP)(DP)的壳聚糖,范围从低到高DP(12、25、33、44、100和470)。我们通过评估其抗真菌特性及其诱导葡萄藤免疫反应的能力来仔细检查其生物学活性。为了研究其启发性活性,我们分析了它们诱导MAPK磷酸化的能力,防御基因的激活和葡萄藤中代谢物变化的能力。我们的结果表明,DP较低的壳聚糖在诱导葡萄的防御能力方面更有效,并且具有针对灰果芽孢杆菌和viticola的最强生物农药作用。我们用DP12将壳聚糖识别为最有效的抗性诱导剂。然后,在过去三年中进行的葡萄园试验中,壳聚糖DP12已针对柔软和白粉病进行了测试。获得的结果表明,当病原体接种量很低时,基于壳聚糖的生物防治产物可能会有效地有效,并且只能与两个
