摘要 沙门氏菌病是欧盟第二大常见的食源性人畜共患病,猪是这种病原体的主要宿主。养猪生产中的沙门氏菌控制需要采取多种措施,其中可通过接种疫苗来减少流行血清型(如鼠伤寒沙门氏菌血清型)的亚临床携带和脱落。减毒活疫苗株在增强细胞介导免疫和允许通过口服途径接种方面具有优势。然而,这些疫苗的主要缺点是对异源血清型的交叉保护作用有限,并且会干扰感染的血清学监测。我们最近表明,减毒沙门氏菌菌株 (ΔXIII) 在鼠感染模型中对鼠伤寒沙门氏菌具有保护作用。ΔXIII 菌株含有 13 条染色体缺失,这使得它无法产生 sigma 因子 RpoS 和合成环二鸟苷酸 (c-di-GMP)。在本研究中,我们的目标是测试 ΔXIII 菌株对猪的保护作用,并研究使用 ΔXIII 是否可以区分已接种疫苗的猪和已感染的猪。结果表明,在断奶前仔猪口服 ΔXIII 疫苗可减少断奶和屠宰时的粪便脱落和回盲淋巴结定植,从而交叉保护仔猪免受鼠伤寒沙门氏菌的攻击。接种疫苗的猪在断奶时既没有粪便脱落,也没有疫苗菌株的组织持续存在,从而确保屠宰时不存在 ΔXIII 菌株。此外,ΔXIII 菌株中缺乏 SEN4316 蛋白,这使得开发血清学测试成为可能,从而区分感染动物和接种疫苗的动物 (DIVA)。
摘要:人们一直在争论货币政策是否应该逆风而行,即中央银行是否也应该应对金融失衡的累积。我通过表明,使用单一工具同时实现两个政策目标对小型开放经济体来说比对封闭经济体来说成本更高,为这场辩论做出了贡献。为此,我开发了一个小型开放经济体 DSGE 模型,该模型采用伯南克-格特勒-吉尔克里斯特金融加速器,以金融摩擦和商品市场的垄断竞争为特征。然后,我为墨西哥估算了该模型,以探索产生最低福利成本的政策制度。我的主要发现是丁伯根规则仍然有效。此外,我的模型可用于衡量在区分外债时宏观审慎措施的有效性。关键词:货币政策、宏观审慎政策、逆风而行、丁伯根规则、资本管制。JEL 分类:C51、E32、E44、E52、E58、E61、F41、G21、G28。
版权所有©2025 Ping,Zuo,Cai,rong,Yu,Zhang,Wang,Ma,Yang,Li,Li,Wang和Zhao。这是根据Creative Commons归因许可(CC BY)的条款分发的开放访问文章。允许在其他论坛上使用,分发或复制,前提是原始作者和版权所有者被记住,并且根据公认的学术实践,请引用本期刊中的原始出版物。不允许使用,分发或复制,不符合这些条款。
理论上,将冰岛突变引入阿尔茨海默病高风险人群的基因组中可以预防或减缓疾病的进展。“不幸的是,我们无法回到过去修复导致神经元死亡的损伤,”研究人员说。“因此,这种治疗方法特别适合受遗传性疾病影响的家庭,这种疾病表现为 35 至 40 岁之间的记忆问题。如果成功,它还可能用于治疗最常见的阿尔茨海默病患者,这种疾病发生在 65 岁以后,是疾病的早期迹象。”
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
WR has served as a speaker for AbbVie, Celltrion, Ferring, Janssen, Galapagos Medice, MSD, Roche, Pfizer, Sobi, Takeda, as a consultant for AbbVie, Amgen, AOP Orphan, Boehringer Ingelheim, Bristol Myers Squibb, Calyx, Celltrion, Eli Lilly, Galapagos, Gilead, Index Pharma,Janssen,Medahead,Microbiotica,Pfizer,Teva,Takeda;作为Abbvie,Amgen,Boehringer Ingelheim,Bristol Myers Squibb,Celltrion,Galapagos,Janssen,Janssen,Pfizer,Teva的顾问委员会成员,并获得了Abbvie,Janssen,Janssen,Sandoz,Sandoz,Sandoz,Sanofi。
Virus-against-virus dominant-negative interference strategy targeting a viral CC chemokine prevents cytomegalovirus-related neurodevelopmental pathogenesis Sylvian Bauer 1 *, Sarah Tarhini 1 , Emmanuelle Buhler 1 , Saswati Saha 2 §, Thomas Stamminger 3 , Daniel N. Streblow 4 , Nail Burnashev 1 , HervéLuche5,Pierre Szepetowski 1 * 1 Inmed,Inserm,Aix-Marseille University,Marseille,法国,法国。2 TAGC,Inserm,Aix Marseille University,Turing Living Systems,Marseille,法国。 3德国乌尔姆大学病毒学研究所。 4疫苗和基因治疗研究所,俄勒冈州健康与科学大学,美国俄勒冈州,美国俄勒冈州。 5 Ciphe,Phenomin,Inserm,CNRS,Aix-Marseille University,Marseille,法国。 §§法国SAS,法国92130,法国 *与:bauer博士,De neurobiologie delaMéditerranée(INMED),Inserm umr1249,Parc Scientifife de luminy,bp13,132273 Marseille Marse france。 电话:+33 4 9182 8182;传真:+33 4 9182 8101;电子邮件:sylvian.bauer@inserm.fr; Szepetowski博士,Neurobiologie delaMéditerranée(INMED),Inserm umr1249,Parc Scientifique de Luminy,BP13,13273 Marseille Cedex 09,法国。 电话:+33 4 9182 8111;传真:+33 4 9182 8101;电子邮件:Pierre.szepetowski@inserm.fr`简短标题:CMV神经病发生中的病毒趋化因子2 TAGC,Inserm,Aix Marseille University,Turing Living Systems,Marseille,法国。3德国乌尔姆大学病毒学研究所。4疫苗和基因治疗研究所,俄勒冈州健康与科学大学,美国俄勒冈州,美国俄勒冈州。5 Ciphe,Phenomin,Inserm,CNRS,Aix-Marseille University,Marseille,法国。§§法国SAS,法国92130,法国 *与:bauer博士,De neurobiologie delaMéditerranée(INMED),Inserm umr1249,Parc Scientifife de luminy,bp13,132273 Marseille Marse france。电话:+33 4 9182 8182;传真:+33 4 9182 8101;电子邮件:sylvian.bauer@inserm.fr; Szepetowski博士,Neurobiologie delaMéditerranée(INMED),Inserm umr1249,Parc Scientifique de Luminy,BP13,13273 Marseille Cedex 09,法国。电话:+33 4 9182 8111;传真:+33 4 9182 8101;电子邮件:Pierre.szepetowski@inserm.fr`简短标题:CMV神经病发生中的病毒趋化因子
摘要:慢病毒载体是疫苗接种最有效的病毒载体之一。与参考腺病毒载体形成鲜明对比的是,慢病毒载体在体内转导树突状细胞方面具有很高的潜力。在这些细胞中,慢病毒载体最能有效地激活幼稚 T 细胞,它们诱导转基因抗原的内源性表达,这些抗原可直接进入抗原呈递途径,而无需外部抗原捕获或交叉呈递。慢病毒载体可诱导强大、强劲和持久的体液、CD8 + T 细胞免疫力,并有效预防多种传染病。人类群体对慢病毒载体没有预先存在的免疫力,这些载体的促炎特性非常低,为它们在粘膜疫苗接种中的应用铺平了道路。在这篇综述中,我们主要总结了慢病毒载体的免疫学方面、它们最近诱导 CD4 + T 细胞的优化,以及我们最近在临床前模型中使用慢病毒载体进行疫苗接种的数据,包括预防黄病毒、SARS-CoV-2 和结核分枝杆菌。
寨卡病毒属于黄病毒科,主要通过受感染的伊蚊传播。2016 年,寨卡病毒感染因其爆发性传播和对发育中胎儿的显著神经系统缺陷而成为全球卫生紧急事件。由于寨卡病毒复发的风险和对流行病学的了解有限,开发安全有效的寨卡病毒疫苗仍然是当务之急。我们设计了一种基于非整合慢病毒载体 (NILV) 的寨卡病毒疫苗,该疫苗编码了当前流行的寨卡病毒株的共识前膜和包膜糖蛋白。我们进一步评估了该疫苗在免疫缺陷和免疫功能正常的小鼠模型中的免疫原性和保护效果。在两种小鼠模型中,一次免疫均可产生强大的中和抗体滴度,并在免疫后 7 天内提供对寨卡病毒攻击的完全保护。这种基于 NILV 的疫苗在免疫小鼠 6 个月后再次接种时也能诱导持久免疫力。总而言之,我们的 NILV 寨卡疫苗通过单剂免疫提供快速而持久的保护,无需额外的佐剂配方。我们的数据表明,这是一种有希望用于紧急情况的寨卡疫苗候选物,并证明了慢病毒载体作为高效疫苗递送平台的能力。
SARS-CoV-2 肽选择免疫信息学分析工作流程。A) SARS-CoV-2 抗原选择策略。B) SARS-CoV-2 刺突三聚体 (PDB ID 6VXX) 表面表示为灰色。每个单体的受体结合域 (RBD) 以橙色突出显示。计算机工作流程中排名靠前的表位序列以黄色 (RBD 区域) 和绿色 (其他刺突区域) 突出显示。在顶视图中,选定的肽以红色突出显示 (MHC-I